Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волагоград (844)278-03-48 Вологград (844)278-03-48 Воролеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (3832)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

Россия +7(495)268-04-70

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37

Казахстан +7(7172)727-132

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Сарана (846)206-03-16 Саранаск (8342)22-96-24 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35 Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Уда (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Черповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Киргизия +996(312)96-26-47

www.sigmaaldrich.nt-rt.ru || scx@nt-rt.ru

Технические характеристики на антитела в области исследований колоректального рака и в области неврологии

компании Sigma-Aldrich

Формы антител: иммуноглобулины.

аффинные

изолированные

антитела,

очищенные

Explore with confidence: Prestige Antibodies® in Neuroscience

TATLAS ANTIBODIES

The life science business of Merck operates as MilliporeSigma in the U.S. and Canada.

- 2 Background the Human Protein Atlas
- 3 Prestige Polyclonals and Prestige Monoclonals
- 4 Antibody Panel for Neuroscience
- 6 Antibodies against proteins involved in Signaling
- 11 Neural Lineage Markers
- 14 Antibodies against proteins involved in Aging and Neurodegenerative Disorders
 - Alzheimers, Parkinsons and Huntington's Diseases
- 16 Antibodies against proteins involved in Developmental Processes
- 18 Antibodies on HPA Mouse Brain Atlas
- 21 References

The Human Protein Atlas

Tissue Atlas

The Human Protein Atlas is Characterizing the Human Proteome

The Human Protein Atlas project has created a complete map of protein expression in all major organs and tissues in the human body^{1,2}. To accomplish this, highly specific antibodies have been developed to all protein coding human genes and protein profiling is established in a multitude of tissues and cells using tissue arrays.Applications applied are immunohistochemistry(IHC), Western blot(WB) analysis, protein array assay and immunofluorescent based confocal microscopy (ICC-IF).

The antibodies developed within the Human Protein Atlas project are carefully designed and manufactured to achieve the very highest level of specificity, reproducibility and versatility. You will find them in our catalog as Prestige Polyclonals.

The Human Protein Atlas (HPA) project was initiated in 2003 by Swedish researchers, headed by Professor Mathias Uhlén, and funded by the Knut and Alice Wallenberg foundation. It is a unique world leading effort performing systematic exploration of the human proteome using antibodies.

The Human Protein Atlas is divided into three major parts, the Tissue Atlas, Cell Atlas and Cancer Atlas. In different ways, the atlases show gene and protein expression data and make it easy to access, search and navigate.

The Tissue Atlas

For all proteins represented in the Tissue Atlas, the expression profiles are based on IHC analysis on a large number of human tissues. All IHC image scan be viewed in high resolution on the Tissue Atlas. The

Cell Atlas

presentation of protein expression data in correlation to RNA sequencing data for each gene is included.

Tissue microarrays containing samples from 44 different normal human tissues and from 20 different cancer types are utilized within the project. The 44 normal tissues are present in triplicate samples and annotated in 76 different cell types. All normal tissue images have undergone pathology-based annotation of expression levels and are displayed on the normal Tissue Atlas presenting information regarding the expression profiles of human genes both on mRNA and protein level. The mRNA expressiondata is derived from deep sequencing of RNA (RNASeq) from 37 major different normal tissue types.

The Cell Atlas

The Cell Atlas presents subcellular localization by confocal microscopy. The results are displayed as high resolution, multicolor images of immunofluorescently stained cells. Three human cell lines for each antibody are selected for the immunofluorescence analysis. Two cell lines from a cell line panel are chosen based on RNA sequencing data and the third cell line is always U-2 OS.

The Cancer Atlas

The Cancer Atlas contains gene expression data based on protein expression patterns in a multitude of human cancer specimens. Altogether 216 different cancer samples, corresponding to the 20 most common forms of human cancer, have been analyzed for all included genes. All cancer tissue images have been manually annotated by pathologists and just as for the normal Tissue Atlas, protein data includes protein expression levels corresponding to over 15,000 genes for which there are available antibodies.

Cancer Atlas

Validation in Human Neuro Tissues and Cell Lines

IHC images from human cerebellum, hippocampus, lateral ventricle wall and cerebral cortex tissues are available for the antibodies, as well as from stainings in the following brain cell lines: D341 Med, SH-SY5Y, U-138 MG, U-251 MG, U-87 MG. Malignant glioma tumor samples from up to 12 patients are presented for each antibody in the Cancer Atlas. In addition to IHC images, there are available immunofluorescence (ICC-IF) images from staining in U-251 MG cells for subcellular location information of the proteins.

HPA Mouse Brain Atlas

The protein atlas of the mouse brain project is a new addition to the Human Protein Atlas with the aim to increase the knowledge on protein expression and distribution in the mammalian brain. The basic architecture and organization of the brain, sequence of functional domains within proteins and expression of genes are largely preserved throughout mammalian evolution. This enabled a successful expansion of the current data on protein expression in 4 brain regions (cerebral cortex, lateral ventricle, hippocampus and cerebellum) in the human to over 120 brain regions and subfields containing additional cell types in the much smaller mouse brain using the same antibodies raised against human proteins.

The first release of the HPA Mouse Brain Atlas contains protein expression profiles of 80 genes selected based on global expression (brain vs. peripheral organs), differential expression in the brain (brain regions), cellular expression (neurons, glia and others) and function (physiology, development or disease).

Prestige Polyclonals

The uniqueness and low cross reactivity of Prestige Polyclonals to other proteins are due to a thorough selection of antigen regions, affinity purification on the recombinant antigen, validation using several methods and a stringent approval process.

Development

The Prestige Polyclonals are developed against recombinant human Protein Epitope Signature Tags (PrESTs) of approximately 50 to 150 amino acids. These protein fragments are designed, using a proprietary software, to contain unique epitopes present in the native protein suitable for triggering the generation of antibodies of high specificity. This is achieved by a

Prestige Monoclonals

We also provide a selected number of mouse monoclonal antibodies, under the brand name Prestige Monoclonals. The Prestige Monoclonals catalog is regularly expanding with new products every year.

Unique Features

Special care is taken in offering clones recognizing only unique non-overlapping epitopes and/or isotypes. Using the same stringent PrEST production process and characterization procedure as for the Triple A, the Prestige Monoclonals offer outstanding performance in approved applications, together with defined specificity, secured continuity and stable supply. In general they also permit high working dilutions and contribute to more standardized assay procedures.

Clone Selection

Functional characterization is performed on a large number of ELISA positive cell supernatants to select the optimal clones for each application prior to subcloning and expansion of selected hybridomas. complete human genome scanning to ensure that PrESTs with the lowest homology to other human proteins are used as antigens.

Approval

The approval of the Prestige Polyclonals relies on a combined validation of the experimental results using IHC, WB or ICC-IF, from RNA sequencing and from information obtained via bioinformatics prediction methods and literature. Since the literature is often inconclusive, an important objective of the HPA project has been to generate paired antibodies with non-overlapping epitopes towards the same protein target, allowing the results and validation of one antibody to be used to validate the other one.

Prestige Polyclonal catalog

Today, there are more than 21,000 Prestige Polyclonals and new antibodies are added each year.

The antibodies developed and characterized within the Human Protein Atlas project are supplied by Merck under the brand name Prestige Polyclonals. The product numbers of Prestige Polyclonals start with "HPA"

Epitope Mapping

Clones are epitope-mapped using synthetic overlapping peptides in a bead-based array format for selection of clones with non-overlapping epitopes only.

Isotyping

All Prestige Monoclonals antibodies are isotyped to allow for multiplexing using isotype-specific secondary antibodies.

Hybridoma Cell Cultivation

In-vitro methods are used for the production scale up phase thus replacing the use of mice for production of ascites fluid.

Antibody Characterization

The characterization of Prestige Monoclonals starts with an extensive literature search to select the most relevant and clinically significant tissues to use for IHC characterization. Often there are more than one tissue type displayed in the IHC application data for each antibody. In addition to positive stained tissue, a negative control tissue staining is also displayed and if relevant, clinical cancer tissue staining.

The Western blot (WB) characterization includes results from endogenous human cell or tissue protein lysates or optionally recombinant full-length human protein lysates.

Each Prestige Monoclonal is thus supplied with the most relevant characterization data for its specific target.

Prestige Monoclonals are developed based on the knowledge from the Human Protein Atlas with careful antigen design and extended validation of antibody performance. With precise epitope information following all monoclonals, these precise, accurate and targeted antibodies are denoted Prestige Monoclonals. The neuroscience marker panel consists of Prestige Monoclonals antibodies designed to recognize the main anatomical and neurochemical cell types in rodent and human nervous system.

Figure 1. Multiplexed IHC-IF staining of a coronal section of rat brain visualizing neurons in green, olygodendrocytes in magenta and astrocytes in red. Anti-NEFM antibody of isotype IgG2b (AMAb91030 is used to show neurons and their processes, olygodendrocytes are detected by Anti-CNP antibody of isotype IgG2a (AMAb91068) and astrocytes by Anti-GFAP antibody of isotype IgG1 (AMAb91033).

We have taken great care to be able to offer these markers as tools for mapping the structures and cell types in the central and peripheral nervous system.

- Selected target proteins are expressed only by a single cell type
- IHC-validation in rat, mouse and human tissues
- WB-validation in mouse and human tissue lysates for the majority of the markers
- Antibodies of different isotypes, allowing for multiplexing experiments

Markers for Neural Lineage and Signaling

The Neuroscience Marker panel consists of 34 antibodies targeting neural lineage markers and signaling markers. The panel includes neural lineage markers for neurons, astrocytes and oligodendrocytes/ Schwann cells. Signaling markers target the glutamate, GABA, acetylcholine, noradrenaline, dopamine and serotonin systems.

Figure 1 shows coronal section of rat brain labeled with markers for

three different cell types, including neurons, olygodendrocytes and astrocytes. The antibodies used are Anti-NEFM (AMAb91030), Anti-CNP (AMAb91068) and Anti-GFAP (AMAb91033) respectively.

In **Figure 2,** some of the major brain neurotransmitter systems are shown on sagittal mouse brain section. The image demonstrates the GABAergic system, glutamatergic system and acetylcholine system, here visualized by the Anti-GAD1 (AMAb91076), Anti-VGLUT1(AMAb91041) and Anti-CHAT (AMAb91129) antibodies respectively.

Figure 2. Left: Multiplexed IHC-IF staining of sagittal mouse brain section showing the GABAergic system in red, glutamatergic system in green and acetylcholine system in magenta. The Anti-GAD1 antibody of isotype IgG2a (AMAb91076) is used as marker for the GABAergic system, Anti-VGLUT1 antibody of isotype IgG2b (AMAb91041) for the glutamatergic system and Anti-CHAT antibody of isotype IgG1 (AMAb91129) is used to visualize the acetylcholine system. Right: High-power image demonstrates the three systems in the basal forebrain (caudate putamen/globus pallidus), using the same antibodies.

High Specificity and Interspecies Reactivity

Prestige Monoclonals Neuroscience markers show high specificity and selectivity for their target proteins. On the right, there is an example of the Anti-NET (AMAb91116) monoclonal antibody. This antibody recognizes the norepinephrine/ noradrenaline transporter (NET, SLC6A2) and can be used to detect both noradrenergic cell bodies and processes in rat, mouse and human nervous system. The Anti-NET antibody AMAb91116 is highlyspecific and does not show any cross-reactivity with e.g. dopamine transporter (SLC6A3, DAT).

Figure 3 shows specific staining of noradrenergic cell bodies and fibers in rat locus coeruleus (A), noradrenergic fibers in mouse cerebral cortex (B) and noradrenergic cell bodies and fibers in human locus coeruleus (C). The specificity of the AMAb91116 is further demonstrated on image D. It shows a coronal section of rat brain at the level of caudate putamen stained with Anti-NET (AMAb91116) in green and Anti-DAT (AMAb91125) in magenta. The caudate putamen is virtually devoid of noradrenaline fibers, only single ones can sometimes be observed (in green), while a dense network of thin dopamine fibers is seen in caudate putamen (in magenta).

The product numbers of Prestige Polyclonals start with "HPA" and of Prestige Monoclonals with "AMAb".

Table 1. Prestige Monoclonals Neuroscience Markers

Marker for	Product Name	Product Number	Validated Applications	Isotype
Neurons	Anti-NEFM (NF160)	AMAb91027	IHC*, WB*	IgG1 K
Neurons	Anti-NEFM (NF160)	AMAb91028	IHC*, WB*	IgG1 K
Neurons	Anti-NEFM (NF160)	AMAb91029	IHC*, WB*	IgG2a K
Neurons	Anti-NEFM (NF160)	AMAb91030	IHC*, WB*	IgG2b K
Neurons	Anti-NEFH (NF200)	AMAb91025	IHC, WB	IgG1 K
Neurons	Anti-UCHL1 (PGP9.5)	AMAb91145	IHC*, WB*	IgG1
Astrocytes	Anti-GFAP	AMAb91033	IHC*, WB*	IgG1 K
Astrocytes	Anti-S100B	AMAb91038	IHC*, WB	IgG1 K
Astrocytes	Anti-GLUL	AMAb91101	IHC*, WB*	IgG1
Astrocytes	Anti-GLUL	AMAb91102	IHC*, WB*	IgG1
Astrocytes	Anti-GLUL	AMAb91103	IHC*, WB*	IgG2a K
Schwann cells, oligodendrocytes	Anti-MBP	AMAb91062	IHC*, WB*	IgG2a K
Schwann cells, oligodendrocytes	Anti-MBP	AMAb91063	IHC*, WB*	IgG1
Schwann cells, oligodendrocytes	Anti-MBP	AMAb91064	IHC*, WB*	IgG1
Oligodendrocytes	Anti-MOG	AMAb91066	IHC*, WB	IgG1
Oligodendrocytes	Anti-MOG	AMAb91067	IHC*, WB	IgG1
Oligodendrocytes	Anti-CNP	AMAb91068	IHC*, WB*	IgG2a K
Oligodendrocytes	Anti-CNP	AMAb91069	IHC*, WB*	IgG1
Oligodendrocytes	Anti-CNP	AMAb91072	IHC*, WB*	IgG2b K
Acetylcholine neurons	Anti-CHAT	AMAb91130	IHC*	IgG2b
Acetylcholine neurons	Anti-CHAT	AMAb91129	IHC*	IgG1
Glutamate neurons	Anti-SLC17A7 (VGLUT1)	AMAb91041	IHC*, WB	IgG2b K
Glutamate neurons	Anti-SLC17A6 (VGLUT2)	AMAb91081	IHC*	IgG1
Glutamate neurons	Anti-SLC17A6 (VGLUT2)	AMAb91086	IHC*	IgG1
GABA neurons	Anti-SLC32A1 (VGAT)	AMAb91043	IHC*	IgG1 λ
GABA neurons	Anti-GAD1 (GAD67)	AMAb91076	IHC*, WB	IgG2a K
GABA neurons	Anti-GAD1 (GAD67)	AMAb91078	IHC*, WB	IgG1
GABA neurons	Anti-GAD1 (GAD67)	AMAb91079	IHC*, WB*	IgG2b K
GABA neurons	Anti-GAD2 (GAD65)	AMAb91048	IHC*, WB*	IgG1 K
Dopamine neurons	Anti-SLC6A3 (DAT)	AMAb91125	IHC*	IgG1
Dopamine neurons	Anti-DDC	AMAb91089	IHC*, WB	IgG1
Noradrenaline neurons	Anti-SLC6A2 (NET)	AMAb91116	IHC*	IgG1
Dopamine and noradrenaline neurons	Anti-TH	AMAb91112	IHC*	IgG1
Serotonin neurons	Anti-TPH2	AMAb91108	IHC*	IgG1

Figure 3. IHC-IF (A, B, D) and bright-filed (C) IHC staining demonstrating specificity and selectivity of Anti-NET antibody (AMAb91116) in rat (A, D), mouse (B) and human (C) brain. Staining with Anti-NET (AMAb91116) is shown in green (A, B, D) and in brown (C). DAT immunoreactivity is visualized in magenta using Anti-DAT antibody (AMAb91125).

* Validated for human and rodent samples

Signaling

Immunohistochemical staining of rat brain (left) and mouse cholinergic basal forebrain (right) using Anti-CHAT antibody (HPA048547) shows strong immunoreactivity in cholinergic cell bodies and terminals. High power image in the lower right corner demonstrates ChAT immunoreactivity in the motor end-plates in rat skeletal muscle. ChAT=choline O-acetyltransferase, enzyme catalyzing biosynthesis of acetylcholin.

The Anti-MGLUR1 antibody (HPA015701) against glutamate receptor, metabotropic 1 strongly labels cortical perikarya, shown by IHC in human cerebral cortex tissue.

The Anti-KIF11 antibody (HPA010568) against Kinesin family member 11 strongly labels fibers in human hippocampus tissue.

The gamma-aminobutyric acid (GABA) A receptor, alpha 3 (Anti-GABRA3) antibody (HPA000839) strongly labels fibers in various brain regions including the rat central amygdala.

Calmodulin-dependent protein kinase II beta is expressed in various neuron populations in the mouse brain including pyramidal neurons in the somatosensory cortex. This is illustrated using the Anti-CAMK2B antibody (HPA026307).

nt binding protein 1 is strongly expressed in the granular layer of the

10 10

Product Name	Product Number	Applications	Antigen seq identity to mouse/rat
Anti-ATF2	HPA022134	IHC,WB*,ICC-IF	99 / 99%
Anti-ATF3	AMAb90909	IHC	92 / 92%
Anti-ATF3	HPA0015621-3	IHC,WB*,ICC-IF	92 / 92%
Anti-ATP1B1	HPA0129114	IHC,WB	93 / 93%
Anti-ATP1B2	HPA010698⁵	IHC	96 / 88%
Anti-CAMK2B	HPA026307	IHC,WB*	96 / 96%
Anti-CAMK2D	HPA026281	IHC	100 / 97%
Anti-C-FOS	HPA0185316	IHC,WB*,ICC-IF	94 / 94%
Anti-CHAT	AMAb91130	IHC	96 / 96%
Anti-CHAT	HPA048547	IHC	96 / 96%
Anti-CHRM1 (M1 mAChR)	HPA0141017	IHC	98 / 97%
Anti-CHRM2 (M2 AChR)	HPA029795	IHC	88 / 86%
Anti-CLIC4	HPA008019 ^{8,9}	IHC,WB,ICC-IF	98 / 97%
Anti-CREB1	HPA019150	IHC,WB*,ICC-IF	100 / 100%
Anti-DAT	HPA013602	IHC	85 / 85%
Anti-DDC	AMAb91089	IHC,WB	90 / 88%
Anti-DDC	HPA017742	IHC,WB*,ICC-IF	90 / 88%
Anti-EAAC1	HPA020086	IHC	77 / 79%
Anti-EAAT2	HPA009172	IHC	87 / 89%
Anti-GABRA3	HPA00083910	IHC,WB*	91 / 93%
Anti-GABRB1	HPA051297	IHC	97 / 100%
Anti-GABRG1	HPA03562211	IHC	96 / 94%
Anti-GAD1 (GAD67)	AMAb91076	IHC,WB	
Anti-GAD1	HPA058412	IHC,WB	94 / 94%
Anti-GAD2	AMAb91048	IHC,WB*	
Anti-GAD2	HPA044637	IHC	84 / 88%
Anti-GAT1		IHC	98 / 98%
Anti-GAT3	HPA013341	IHC,WB	85 / 87%
Anti-GLUR2 (AMPA2)	HPA037981	IHC	100 / 100%
Anti-HTR2A	HPA00844112,13	IHC	95 / 97%
Anti-KCC4	HPA014011	IHC,WB*	84 / 82%
Anti-KCNJ5 (KIR3.4)	HPA041652	IHC,WB	89 / 89%
Anti-KCNN2 (KCA2.2)	HPA01735314	IHC	96 / 97%
Anti-KIF11	HPA01056815	IHC,WB*,ICC-IF	88 / 83%
Anti-KIF17	HPA032085	IHC,ICC-IF	85 / 82%
Anti-KIF18A	HPA039312 ¹⁶	IHC,WB,ICC-IF	80 / 82%
Anti-KIF1A	HPA005442	IHC	95 / 96%
Anti-KIF1C	HPA024602	IHC,WB*,ICC-IF	81 / 83%
Anti-KIF21B	HPA027249	IHC	91 / 93%
Anti-KIF26B	HPA028562	IHC,ICC-IF	88 / 80%
Anti-KIF4A (KIF4A & B)	HPA034745	IHC,WB,ICC-IF	64 / 63%
Anti-KIF5A	HPA004469	IHC,WB*	91 / 88%
Anti-KIF5C	HPA035210	IHC,WB,ICC-IF	100/100%
Anti-KIF7	HPA043145	IHC,WB	69 / 69%

* WB both in human and rodent samples

1. Wu X *et al.* Opposing roles for calcineurin and ATF3 in squamous skin cancer. *Nature* 2010 May 20;465(7296):368-72.

2. Hai T *et al*. Immunohistochemical Detection of Activating Transcription Factor 3, a Hub of the Cellular Adaptive-Response Network. *Methods Enzymol* 2011; 490175-194.

3. Wei S *et al.* The Activating Transcription Factor 3 Protein Suppresses the Oncogenic Function of Mutant p53 Proteins *J Biol Chem* 2014/03/28 289(13):8947-8959. Epub 2014/02/19.

4. Lee SJ *et al.* Na,K-ATPase β 1-subunit is a target of sonic hedgehog signaling and enhances medulloblastoma tumorigenicity. *Mol Cancer.* 2015/08/19;14:159.

5. Hilbers F *et al.* Tuning of the Na,K-ATPase by the beta subunit *Scientific Reports*, 6, (2016).

6. Pio R *et al*. Early Growth Response 3 (Egr3) Is Highly Over-Expressed in Non-Relapsing Prostate Cancer but Not in Relapsing Prostate Cancer. *PLoS One* 2013 28(1):e54096.

7. Molina J *et al.* Control of Insulin Secretion by Cholinergic Signaling in the Human Pancreatic Islet *Diabetes*, 2014 Aug; 63(8):2714-2726. Epub 2014/07/17.

8. Lomnytska MI *et al.* Impact of genomic stability on protein expression in endometrioid endometrial cancer *Br J Cancer* 2012 Mar 27; 106(7):1297-1305. Epub 2012/03/13.

9. Yan H *et al.* Histamine H3 receptors aggravate cerebral ischaemic injury by histamine-independent mechanisms. *Nat Commun* 2014 253334. Epub 2014/02/25.

10. Mulder J *et al.*Tissue Profiling of the Mammalian Central Nervous System Using Human Antibodybased Proteomics *Mol Cell Proteomics*, 2009 Jul; 8(7):1612-1622. Epub 2009 Apr 7

11. Smits A *et al*. GABA-A Channel Subunit Expression in Human Glioma Correlates with Tumor Histology and Clinical Outcome. *PLoS One* 2012 27(5):e37041. Epub 2012 May 17.

12. Leja J *et al*. Novel markers for enterochromaffin cells and gastrointestinal neuroendocrine carcinomas. *Mod Pathol* 2009 Feb;22(2):261-72.

13. Choi CH *et al.* Identification of differentially expressed genes according to chemosensitivity in advanced ovarian serous adenocarcinomas: expression of GRIA2 predicts better survival. *Br J Cancer* 2012 Jun 26;107(1):91-9.

14. Azizan EA *et al*. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. *Nat Genet* 2013 Sep;45(9):1055-60.

15. Kuga T *et al*. Lamin B2 prevents chromosome instability by ensuring proper mitotic chromosome segregation. *Oncogenesis* 2014 Mar 17;3:e94.

Signaling (continued)

The GTPase-activating protein RAP1GAP is expressed in a subset of neurons including hippocampal interneurons in the mouse brain. This is illustrated using the Anti-RAP1GAP antibody (HPA001922).

Vesicular glutamate transporter 2 (SLC17A6/ VGluT2) mediates the uptake of glutamate into synaptic vesicles at presynaptic nerve terminals. Here shown using the Anti-SLC17A6 antibody (HPA039226) on rat cerebellum section.

The noradrenaline transporter (NET/SLC6A2) is responsible for reuptake of noradrenaline into presynaptic nerve terminals and stains noradrenergic fibers throughout the brain and labels noradrenergic neurons in the rat locus coeruleus. Illustrated here by the Anti-SLC6A2/NET antibody (AMAb91116).

In Western Blot, the HPA001830 antibody recognizes a band of expected target size (23 kDa).

(HPA058859).

and retina using the Anti-SLC32A1 antibody

Product Name	Product Number	Applications	Antigen seq identity to mouse/rat
Anti-KIFAP3	HPA023742	IHC	100 / 100%
Anti-KCNC2	HPA019664	IHC,WB	71 / 99%
Anti-MAPK1 (ERK)	HPA030069	IHC,WB,ICC-IF	100 / 100%
Anti-MAPK3 (ERK1)	HPA005700	IHC,WB*	98 / 98%
Anti-MGLUR1	HPA015701	IHC	80 / 80%
Anti-MGLUR8	HPA051481	IHC	95 / 90%
Anti-NCS1	HPA019713	IHC,WB,ICC-IF	100 / 100%
Anti-PRKCA	HPA006563	IHC,WB*,ICC-IF	99 / 99%
Anti-PRKCH	HPA053709	IHC,ICC-IF	97 / 64%
Anti-PNMT	HPA051005	IHC,WB	89 / 92%
Anti-PRKACB (PKACB)	HPA029754	IHC	73 / 76%
Anti-PRKCZ	HPA021851	IHC,WB	94 / 94%
Anti-RAB3A	HPA003160	IHC	99 / 99%
Anti-RAP1GAP	HPA001922 ¹⁷	IHC,WB*	92 / 91%
Anti-RAP1GAP2	HPA02289618	IHC,WB*,ICC-IF	94 / 95%
Anti-SLC17A6 (VGLUT2)	AMAb91981	IHC	85 / 85%
Anti-SLC17A6 (VGLUT2)	HPA039226	IHC,WB	85 / 85%
Anti-SLC17A7 (VGLUT1)	AMAb91041	IHC,WB	94 / 94%
Anti-SLC17A7 (VGLUT1)	HPA063679	IHC,WB	94 / 94%
Anti-SLC22A2	AMAb90792	IHC	84 / 77%
Anti-SLC22A2	HPA00856719	IHC,WB	84 / 77%
Anti-SLC32A1 (VGAT)	AMAb91943	IHC	95 / 93%
Anti-SLC32A1 (VGAT)	HPA058859	IHC	95 / 93%
Anti-SLC6A2 (NET)	AMAb91116	IHC	
Anti-SLC6A3 (DAT)	AMAb91125	IHC	85 / 85%
Anti-SLC6A3 (DAT)	HPA013602	IHC,WB	85 / 85%
Anti-SNAP25	HPA001830 ²⁰⁻²²	IHC,WB,ICC-IF	100 / 100%
Anti-SNAP29	HPA031823	IHC	89 / 92%
Anti-SST (SOM)	HPA019472	IHC,WB	98 / 98%
Anti-STXBP1	HPA008209	IHC,WB*,ICC-IF	100 / 100%
Anti-STXBP6	HPA003552	IHC,WB	99 / 99%
Anti-SYNGR1	HPA029673	IHC	90 / 88%
Anti-SYNPR	HPA061671	IHC,WB	97 / 97%
Anti-SYP	HPA002858	IHC,WB	83 / 83%
Anti-SYT1	HPA008394	IHC,WB	100 / 100%
Anti-SYT12	HPA011006	IHC,WB*	96 / 98%
Anti-SYT13	HPA046224	IHC	96 / 93%
Anti-SYT16	HPA004199	IHC,WB	95 / 95%
Anti-TGFA	HPA042297	IHC,WB	93 / 93%
Anti-TH	AMAb91112	IHC	88 / 88%
Anti-TH	HPA061003	IHC	88 / 88%
Anti-TPH2 (NTPH)	AMAb91108	IHC	100 / 100%
Anti-TPH2 (NTPH)	HPA046274	IHC	100 / 100%
Anti-VAMP4	HPA050418	IHC,WB,ICC-IF	100 / 100%
Anti-VAMP7	HPA03673323	IHC,ICC-IF	98 / 93%

16. Stadler C *et al*. Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. *Nat Methods*, 2013 Apr; 10(4):315-23. Epub 2013/02/24.

17. Mulder J *et al.* Tissue Profiling of the Mammalian Central Nervous System Using Human Antibodybased Proteomics. *Mol Cell Proteomics*, 2009 Jul; 8(7):1612-1622. Epub 2009/04/7.

18. Jakobsen L *et al.* Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. *EMBO J* 2011 Apr 20; 30(8):1520-35. Epub 2011/03/11.

19. Shao R *et al.* Direct effects of metformin in the endometrium: a hypothetical mechanism for the treatment of women with PCOS and endometrial carcinoma. *J Exp Clin Cancer Res* 33(1):41. Epub 2014/05/11.

20. Mulder J *et al.* Tissue profiling of the mammalian central nervous system using human antibody-based proteomics. *Mol Cell Proteomics* 2009 Jul;8(7):1612-22.

21. Lindskog C *et al.* Novel pancreatic beta cellspecific proteins: antibody-based proteomics for identification of new biomarker candidates. J *Proteomics* 2012 May 17;75(9):2611-20.

22. Cardoso TC *et al*. Immunohistochemical approach to the pathogenesis of clinical cases of bovine Herpesvirus type 5 infections. *Diagn Pathol* 2010 Sep 10;5:57.

23. Tannour-Louet M *et al.* Increased gene copy number of the vesicle SNARE VAMP7 disrupts human male urogenital development through altered estrogen action. *Nat Med* 2014/07/01 00:00; 20(7):715-724. Epub 2014/06/01.

* WB both in human and rodent samples

Signaling (continued)

Calretinin is a neuron specific EF-hand calcium binding protein expressed in subsets of neurons throughout the nervous system. The image shows the labeling of a mouse hippocampus and dorsal thalamus using the Anti-CALB2 antibody HPA007305. Note the strong labeling in the dentate gyrus.

Secretagogin is a newly discovered EF-hand calcium binding protein strongly expressed in the mouse olfactory bulb. Here visualized using the Anti-SCGN antibody HPA006641.

Neural Lineage Markers

Product Name	Product Number	Subcategory	Applications (human tissues)	Antigen seq identity to mouse/rat
Anti-ACTN1	HPA0060351	cytoskeleton	IHC,WB*	98 / 99%
Anti-ACTN4	HPA001873	cytoskeleton	IHC,WB*,ICC-IF	99 / 98%
Anti-AIF	HPA049234 ²	microglia	IHC	84 / 84%
Anti-CALB1 (CB)	HPA023099	calcium binding protein	IHC,WB,ICC-IF	98 / 99%
Anti-CALB2 (CR)	HPA007305	calcium binding protein	IHC,WB*,ICC-IF	100 / 100%
Anti-CD68	AMAb90874	microglia	IHC,WB	76 / 76%
Anti-CD68	HPA0489823	microglia	IHC	76 / 76%
Anti-CNP	AMAb91068	oligodendrocytes	IHC,WB*	76 / 77%
Anti-CNP	HPA023280	oligodendrocytes	IHC,WB,ICC-IF	76 / 77%
Anti-EZR	AMAb90976	astroglia	IHC,WB,ICC-IF	93 / 93%
Anti-EZR	HPA021616 ^{4,5}	astroglia	IHC,WB*,ICC-IF	93 / 93%
Anti-GFAP	AMAb91033	astrocytes	IHC,WB	98 / 100%
Anti-GFAP	HPA056030	astrocytes	IHC,WB	98 / 100%
Anti-GLUL	AMAb91101	astrocytes	IHC,WB*	95 / 53%
Anti-GLUL	HPA007316 ^{6,7}	astrocytes	IHC,WB	95 / 53%
Anti-ICAM5	HPA009083	adhesion molecule	IHC,ICC-IF	85 / 86%
Anti-INA	HPA008057	cytoskeleton	IHC,WB*,ICC-IF	83 / 84%
Anti-ITGAM (CD11b)	AMAb90911	microglia	IHC,WB	67 / 68%
Anti-ITGAM 11920(CD11b)	HPA002274 ^{8,9}	microglia	IHC,WB	67 / 68%
Anti-MAP1A	HPA039064	cytoskeleton	IHC	60 / 52%
Anti-MAP1B	HPA02227510	cytoskeleton	IHC,ICC-IF	85 / 86%
Anti-MAP2	HPA00827311	cytoskeleton	IHC,ICC-IF	96 / 96%
Anti-MBP	AMAb91062	Schwann cells	IHC,WB	97 / 97%
Anti-MBP	HPA049222	Schwann cells	IHC,WB	97 / 97%
Anti-MCAM	HPA008848	adhesion molecule	IHC	75 / 73%
Anti-MKI67 (Ki67)	AMAb90870	progenitors	IHC	68 / 68%
Anti-MKI67 (Ki67)	HPA00045112.13	progenitors	IHC,ICC-IF	66 / 67%
Anti-MOG	AMAb92066	oligodendrocytes	IHC,WB	91 / 89%
Anti-MOG	HPA021873	oligodendrocytes	IHC,WB	91 / 89%
Anti-MYO5A	HPA001356	cytoskeleton	IHC,ICC-IF	99 / 98%
Anti-NCAM2	HPA03090013	adhesion molecule	IHC,ICC-IF	89 / 91%
Anti-NECAB1	AMAb90801	calcium binding protein; interneurons	IHC,WB	98 / 98%
Anti-NECAB1	HPA023629 ¹⁴	calcium binding protein; interneurons	IHC,WB	98 / 98%
Anti-NECAB2	AMAb90808	calcium binding protein; interneurons	IHC	85 / 84%
Anti-NECAB2	HPA013998 ¹⁴	calcium binding protein; interneurons	IHC,ICC-IF	98 / 97%

1. Stadler C *et al.* Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. *Nat Methods*, 2013 Apr; 10(4):315-23. Epub 2013 Feb 24.

2. Silva K *et al.* Cortical neurons are a prominent source of the proinflammatory cytokine osteopontin in HIV-associated neurocognitive disorders. *J Neurovirol* 2015/01/01 21(2):174-185. Epub 2015/01/31.

3. Antoine Louveau *et al.* Structural and functional features of central nervous system lymphatic vessels

Nature June 01, 2015.

4. Andersson G *et al.* Reduced expression of ezrin in urothelial bladder cancer signifies more advanced tumours and an impaired survival: validatory study of two independent patient cohorts. *BMC Urol* 1/01/01 14:36. Epub 2014/05/12.

5. Antoine Louveau *et al.* Structural and functional features of central nervous system lymphatic vessels

Nature June 01, 2015.

 Perisic L et al. Profiling of atherosclerotic lesions by gene and tissue microarrays reveals PCSK6 as a novel protease in unstable carotid atherosclerosis. Arterioscler Thromb Vasc Biol, 2013 Oct; 33(10):2432-43. Epub 2013 Aug 1.

7. Ko YH *et al.* Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: Implications for preventing chemotherapy resistance

Cancer Biol Ther 2011/12/15 00:00; 12(12):1085-1097. Epub 2011/12/15.

8. Zibert JR *et al.* Halting angiogenesis by nonviral somatic gene therapy alleviates psoriasis and murine psoriasiform skin lesions. *J Clin Invest* 2011 Jan 4;121(1):410-21.

9. Pedersen ED *et al*. In situ deposition of complement in human acute brain ischaemia. *Scand J Immunol* 2009 Jun;69(6):555-62.

10. Claudio Isella *et al.* Stromal contribution to the colorectal cancer transcriptome. *Nature Genetics* February 23, 2015.

11. Lee DA *et al*. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. *Nat Neurosci* 2012 Mar 25;15(5):700-2.

12. Pohler E *et al*. Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma. *Nat Genet* 2012 Oct 14;44(11):1272-6.

13. Li S *et al*. Endothelial VEGF Sculpts Cortical Cytoarchitecture. *J Neurosci* 2013 Sep 11; 33(37):14809-14815.

* WB both in human and rodent samples

Neural Lineage Markers (continued)

13. Rodrigues RM *et al.* Human Skin-Derived Stem Cells as a Novel Cell Source for In Vitro Hepatotoxicity Screefning of Pharmaceuticals. *Stem Cells Dev* 2014/01/01 23(1):44-55. Epub 2013/08/17.

14. Zhang MD *et al.* Neuronal calcium-binding proteins 1/2 localize to dorsal root ganglia and excitatory spinal neurons and are regulated by nerve injury. *Proc Natl Acad Sci USA* 2014 Mar 25;111(12):E1149-58.

15. Häggmark A *et al.* Plasma profiling reveals three proteins associated to amyotrophic lateral sclerosis. *Ann Clin Transl Neurol*, 2014/08/01; 1(8):544-553. Epub 2014/07/14.

16. Bachmann J et al. Affinity Proteomics Reveals Elevated Muscle Proteins in Plasma of Children with Cerebral Malaria. *PLoS Pathog* 1/01/01 10(4):e1004038. Epub 2014/04/17.

17. Edlund K *et al.* CD99 is a novel prognostic stromal marker in non-small cell lung cancer. *Int J Cancer* 2012 Nov 15; 131(10):2264-73. Epub 2012 Apr 24.

18. Bergmann O *et al*. The age of olfactory bulb neurons in humans. *Neuron* 2012 May 24;74(4):634-9.

Product Name

19. Huttner HB *et al.* The age and genomic integrity of neurons after cortical stroke in humans. *Nat Neurosci* 2014 Jun; 17(6):801-3. Epub 2014 Apr 20.

20. Chaichana KL *et al.* Intra-operatively obtained human tissue: protocols and techniques for the study of neural stem cells. *J Neurosci Methods.* 2009 May 30;180(1):116-25.

21. Kielar M *et al.* Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. *Nat Neurosci* 2014 Jul; 17(7):923-33. Epub 2014 May 25.

22. Darcy MJ *et al.* Age-Dependent Role for Ras-GRF1 in the Late Stages of Adult Neurogenesis in the Dentate Gyrus. *Hippocampus* 2014/03/01 24(3):315-325.

23. Shi TJ *et al.* Secretagogin is expressed in sensory CGRP neurons and in spinal cord of mouse and complements other calcium-binding proteins, with a note on rat and human. *Mol Pain* 2012 Oct 29;8:80.

24. Mulder J *et al.* Secretagogin is a Ca2+-binding protein specifying subpopulations of telencephalic neurons. *Proc Natl Acad Sci USA* 2009/12/29; 06(52):22492-22497. Epub 2009/12/16.

Antigen seq

Applications

25. Attems J *et al.* Clusters of secretagoginexpressing neurons in the aged human olfactory tract lack terminal differentiation. *Proc Natl Acad Sci USA*, 2012 Apr 17; 109(16):6259-64. Epub 2012 Apr 2.

27. Lindskog C *et al.* Antibody-based proteomics for discovery and exploration of proteins expressed in pancreatic islets. *Discov Med* 2010 Jun; 9(49):565-78.

28. Chen Y, *et al.* The prognostic potential and oncogenic effects of PRR11 expression in hilar cholangiocarcinoma. *Oncotarget*, 2015 Aug 21; 6(24):20419-20433. Epub 2015 May 4.

Glial fibrillary acidic protein (GFAP) is a cell-specific marker for astrocytes. Here illustrated by the Anti-GFAP antibody HPA056030 in rat cerebral cortex (upper left), mouse cerebral cortex (upper right), human cerebral cortex (lower left) and human cerebellum (lower right) tissue.

			(human tissues)	identity to mouse/rat					
Anti-NEFH (NF200)	AMAb91025	neurons	IHC,WB	88 / 94%					
Anti-NEFH (NF200)	HPA061615	neurons	IHC,ICC-IF	88 / 94%					
Anti-NEFM (NF160)	AMAb91027	neurons	IHC,WB*	98 / 98%					
Anti-NEFM (NF160)	HPA02284515,16	cytoskeleton	IHC	98 / 98%					
Anti-NLGN1	HPA006680	adhesion molecule	IHC,WB	98 / 98%					
Anti-PBK	HPA005753	progenitors	IHC,WB*,ICC-IF	91 / 94%					
Anti-PTPRC	AMAb90518	microgila	IHC,WB	35 /37%					
Anti-PTPRC	HPA00044017	microgila	IHC,WB	35 /37%					
Anti-RBFOX3	HPA03079018,19	neuron nuclear marker	IHC,WB,ICC-IF	93 / 94%					
Anti-S100A8	HPA024372	macrophages	HC,WB	56 / 60%					
Anti-S100B	AMAb91038	astrocytes	IHC,WB	99 / 98%					
Anti-S100B	HPA015768 ²⁰⁻²²	S100 calcium binding protein B	IHC,WB,ICC-IF	99 / 98%					
Anti-SCGN	AMAb90630 ²³	calcium binding protein;interneu- rons	IHC,WB	96 / 96%					
Anti-SCGN	HPA006641 ^{14,24,25}	calcium binding protein;interneu- rons	IHC	96 / 96%					
Anti-UCHL1	AMAb91145	neurons	IHC,WB*	97 / 97%					
Anti-UCHL1	HPA00599327,28	neurons	IHC,WB*,ICC-IF	97 / 97%					
* WB both in human a	* WB both in human and rodent samples								

Product Number Subcategory

Distribution of NECAB1 (green) in the mouse dorsal medial thalamus. The Prestige Monoclonal Anti-NECAB1 antibody AMAb90801 strongly labels neurons and their processes in the paraventricular and mediodorsal thalamic nuclei. Blue is the nuclear staining Hoechst.

The image shows Anti-INA antibody (HPA008057) targeting internexin neuronal intermediate filament protein alpha (INA). Note the strong labeling of axons in striatal nerve bundles in the mouse brain.

Anti-MAP2 antibody (HPA008273) against microtubule-associated protein 2 (MAP2) strongly labels dendrites in the mouse cortex.

Glial fibrillary acidic protein (GFAP) is a cell specific marker distinguishing astrocytes from the other glial cells in the central nervous system. Labelling with the Anti-GFAP antibody HPA056030 shows astrocytes in rat cerebral cortex.

2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP) is a marker for oligodendrocytes in the central nervous system. Illustrated here by the Anti-CNP antibody HPA023280 (IHC) and HPA023266 (IF) in human cerebral cortex (left, middle) and in rat cerebral cortex (right).

The Anti-Allograft inflammatory factor 1 (AIF1) antibody (HPA049234) shows immunoreactivity in the microglia cells in human cortex.

RBFOX3 (=NeuN) is a neuronal specific nuclear protein which can be used to distinguish neurons from glial cells in tissue cultures and sections. Illustrated here by staining with the Anti-RBFOX3 antibody (HPA030790) in human cerebral cortex.

The Anti-Neurofilament medium polypeptide (NEFM) antibody (HPA022845) shows positivity in a subset of neuronal cells in human cerebral cortex.

Aging and Neurological Disorders

Complement component C3 plays an important role in the activation of complement system and has been associated with neuro-inflammation. The Anti-C3 antibody (HPA020432) strongly labels capillaries in MS affected brain tissue. (Blue = Hoechst, Green = IBA1 or GFAP (clone GA5), Red = C3).

Prostaglandin-endoperoxide synthase 1 (PTGS1) is strongly expressed in perikarya from hippocampal neurons (human tissue). Here shown using the Anti-COX1 (HPA002834) antibody.

The Anti-ITM2B antibody (HPA029292), targeting Integral membrane protein 2B, strongly labels the soma and processes of hippocampal neurons (human tissue). Note the labeling of the Golgi apparatus in A-431 cells.

Product Name	Product Number	Applications (human tissues)	Antigen seq identity to mouse/rat	Product Name	Product Number	Applications (human tissues)	Antigen seq identity to mouse/rat
Anti-ADAR	AMAb905351	IHC,WB	86 / 85%	Anti-CTSD	HPA00300112	IHC,WB	86 / 86%
Anti-ADAR	HPA0038902-3	IHC,WB,ICC-IF	86 / 85%	Anti-CXorf27	HPA003356	IHC	47 / 46%
Anti-AIMP1	HPA018476	IHC,WB*,ICC-IF	96 / 97%	Anti-FBXO7	HPA032114	IHC	78 / 81%
Anti-AKT1	AMAb90834	WB	97 / 97%	(PARK15)			
Anti-AOX1	HPA040199	IHC,ICC-IF	84 / 86%	Anti-FUS	AMAb90549	ICC-IF, IHC, WB	91 / 91%
Anti-APBA3	HPA045577	IHC,WB,ICC-IF	70 / 68%	Anti-GSK3B	HPA028017	IHC,WB*,ICC-IF	100 / 100%
Anti-APBB2	HPA023542	IHC,WB,ICC-IF	85 / 83%	Anti-HIP1	HPA017964	IHC,WB	79 / 77%
Anti-APBB3	HPA005571	IHC,WB,ICC-IF	84 / 84%	Anti-HTRA2 (PARK13)	HPA027366	IHC,WB	57 / 63%
Anti-APOA4	AMAb90769	IHC, WB	65 / 28%	Anti-ITGAM	AMAb90911	IHC,WB	67 / 68%
Anti-APP	HPA0014624	IHC,ICC-IF	95 / 95%	(CD11b)			,
Anti-AQP4	AMAb90537	IHC,WB	93 / 92%	Anti-ITGAM	HPA00227413,14	IHC,WB	67 / 68%
Anti-ATF2	HPA022134	IHC,WB*,ICC-IF	99 / 99%	(CD11b)			
Anti-ATF3	AMAb90909	IHC	92 / 92%	Anti-ITM2B	HPA029292	IHC,WB,ICC-IF	95 / 96%
Anti-ATF3	HPA001562	IHC,WB*,ICC-IF	92 / 92%	Anti-LRP2	HPA005980 ¹⁵	IHC	78 / 36%
Anti-ATRX	AMAb90784	ICC-IF, IHC, WB	96 / 97%	Anti-MSR1	HPA000272	IHC,WB	60 / 59%
Anti-ATXN1	HPA008335	IHC,ICC-IF	81 / 81%	Anti-NFKB1	HPA027305	IHC,WB,ICC-IF	60 / 62%
Anti-ATXN2	HPA018295	IHC,WB*,ICC-IF	90 / 91%	Anti-OPTN	HPA00336016	IHC,WB,ICC-IF	64 / 68%
Anti-C3	HPA020432	IHC	78 / 23%	Anti-PADI4	HPA017007	IHC,WB	66 / 69%
Anti-CASP3	HPA0026436	IHC,WB*,ICC-IF	84 / 88%	Anti-PARK7	HPA00419017	IHC,WB*	89 / 90%
Anti-CD4	AMAb90754	IHC, WB	55 / 57%	Anti-PFN1	AMAb91181	IHC, WB	87 / 87%
Anti-CD40	AMAb90905	IHC, WB	58 / 54%	Anti-PHGDH	AMAb90786	IHC, WB	99 / 99%
Anti-CHGA	AMAb90525	IHC, WB	62 / 64%	Anti-PHGDH	HPA02124118-21	IHC,WB*,ICC-IF	99 / 99%
Anti-COX1	HPA0028347	IHC,WB	93 / 90%	Anti-PRNP	HPA042754	IHC	91 / 91%
Anti-COX2/PTGS2	HPA001335 ^{8,9}	IHC	88 / 88%	Anti-PSEN1	HPA030760	IHC	82 / 81%
Anti-CTSB	HPA018156 ^{10,11}	IHC.WB*,ICC-IF	79 / 79%	Anti-RHOT1	AMAb90852	IHC,WB	100 / 100%
		-, ,	,				

Product Name	Product Number	Applications (human tissues)	Antigen seq identity to mouse/rat
Anti-RHOT1	HPA010687 ²²⁻²⁴	IHC,WB	100 / 100%
Anti-S100A8	HPA02437225	IHC,WB	56 / 60%
Anti-SERPINA3	HPA002560 ^{26,27}	IHC,WB	60 / 59%
Anti-SNCB	HPA035876	IHC,WB,ICC-IF	97 / 97%
Anti-SOD1	HPA001401 ^{28,29}	IHC,WB*,ICC-IF	82 / 81%
Anti-SOD2	HPA001814 ^{30,31}	IHC,WB	88 / 87%
Anti-THY1	AMAb90844	IHC,WB	64 / 68%
Anti-THY1	HPA003733	IHC	64 / 68%
Anti-TNFRSF21	HPA006746	IHC,WB	86 / 85%
Anti-TTR	AMAb90649	IHC, WB	81 / 83%

Product Name	Product Number	Applications (human tissues)	Antigen seq identity to mouse/rat
Anti-UBE2K	HPA028869	IHC,ICC-IF	100 / 100%
Anti-UCHL1	HPA005993 ³²	IHC,WB*,ICC-IF	97 / 97%
Anti-USP46	AMAb90722	WB	100 / 99%
Anti-VPS26A	AMAb90967	ICC-IF, IHC, WB	96 / 100%
Anti-WHSC1	AMAb90851	IHC,WB	91 / 91%
Anti-WHSC1	HPA01580133	IHC,WB*,ICC-IF	91 / 91%
Anti-VWF	AMAb90928	IHC,WB	80 / 80%
Anti-VWF	HPA00208234,35	IHC	82 / 78%

* WB both in human and rodent samples

1. Anadón C *et al.* Gene Amplification-Associated Overexpression of the RNA Editing Enzyme ADAR1 Enhances Human Lung Tumorigenesis. *Oncogene*, . Epub 2015 Dec 7.

2. Rice GI *et al*. Mutations in ADAR1 cause Aicardi-Goutiéres syndrome associated with a type I interferon signature. *Nat Genet* 2012 Nov;44(11):1243-8.

3. Witman NM *et al*. ADAR-related activation of adenosine-to-inosine RNA editing during regeneration. *Stem Cells Dev* 2013 Aug 15;22(16):2254-67.

4. Wu CC *et al.* Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas. *Mol Cell Proteomics* 2010 Jun;9(6):1100-17.

5. Sareen D *et al.* Human neural progenitor cells generated from induced pluripotent stem cells can survive, migrate, and integrate in the rodent spinal cord. *J Comp Neurol*, 2014 Aug 15; 522(12):2707-2728. Epub 2014 Apr 12.

6. Contín MA *et al.* Photoreceptor damage induced by low-intensity light: model of retinal degeneration in mammals. *Mol Vis*, 1/01/01; 19:1614-1625. Epub 2013/07/25.

7. Asplund A *et al*. Expression profiling of microdissected cell populations selected from basal cells in normal epidermis and basal cell carcinoma. *Br J Dermatol* 2008 Mar;158(3):527-38.

8. Nuñez F *et al.* Wnt/beta-catenin signaling enhances cyclooxygenase-2 (COX2) transcriptional activity in gastric cancer cells. *PLoS One* 2011 Apr 6;6(4):e18562.

9. Charo C *et al.* Prostaglandin E2 regulates pancreatic stellate cell activity via the EP4 receptor. *Pancreas* 2013 Apr; 42(3):467-74.

10. Wang H *et al.* Heterogeneity in signaling pathways of gastroenteropancreatic neuroendocrine tumors: a critical look at notch signaling pathway. *Mod Pathol* 2013 Jan;26(1):139-47.

11. Perisic L *et al.* Profiling of atherosclerotic lesions by gene and tissue microarrays reveals PCSK6 as a novel protease in unstable carotid atherosclerosis. *J Transl Med.* 2011 Jul 21;9:114.

12. Ahmad Y *et al.* (2011) Systematic analysis of protein pools, isoforms and modifications affecting turnover and subcellular localisation. *Mol Cell Proteomics* Mar;11(3):M111.013680.

13. Zibert JR *et al.* Halting angiogenesis by non-viral somatic gene therapy alleviates psoriasis and murine psoriasiform skin lesions. *J Clin Invest* 2011 Jan 4;121(1):410-21.

14. Pedersen ED *et al.* In situ deposition of complement in human acute brain ischaemia. *J Transl Med* 2009 Jul 21;9:114.

15. Ma LJ *et al.* Angiotensin type 1 receptor modulates macrophage polarization and renal injury in obesity. *Am J Physiol Renal Physiol* 2011 May; 300(5):F1203-F1213. Epub 2011 Mar 2.

16. Smith AM *et al.* Disruption of macrophage pro-inflammatory cytokine release in Crohn's disease is associated with reduced optineurin expression in a subset of patients *Immunology* 2015/01/01; 144(1):45-55. Epub 2014/12/08.

17. Toyoda Y *et al.* Products of the Parkinson's disease-related glyoxalase DJ-1, D-lactate and glycolate, support mitochondrial membrane potential and neuronal survival. *Biol Open* 3(8):777-784. Epub 2014/07/25.

18. Possemato R et al. (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature. Aug 18;476(7360):346-50.

19. Maddocks OD et al. (2013) Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature. Jan 24;493(7433):542-6.

20. Nilsson LM et al (2012) Mouse genetics suggests cell-context dependency for Myc-regulated metabolic enzymes during tumorigenesis. PLoS Genet8(3):e1002573.

21. Mattaini KR et al. An epitope tag alters phosphoglycerate dehydrogenase structure and impairs ability to support cell proliferation. Cancer Metab 1/01/01; 3:5. Epub 2015/04/29.

22. Bingol B et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 2014 Jun 19; 510(7505):370-5. Epub 2014 Jun 4.

23. Birsa N et al. Lysine 27 Ubiquitination of the Mitochondrial Transport Protein Miro Is Dependent on Serine 65 of the Parkin Ubiquitin Ligase. J Biol Chem 2014/05/23; 289(21):14569-14582. Epub 2014/03/26.

24. De Vos KJ et al. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum Mol Genet 2012 Mar 15;

21(6):1299-311. Epub 2011 Nov 30.

25. Ellis CN et al. Comparative Proteomic Analysis Reveals Activation of Mucosal Innate Immune Signaling Pathways during Cholera Infect Immun, 2015 Mar; 83(3):1089-1103. Epub 2015 Jan 5.

26. Häggmark A et al. (2013) Antibody-based profiling of cerebrospinal fluid within multiple sclerosis. Proteomics Aug;13(15):2256-67.

27. Bannon MJ et al. A Molecular Profile of Cocaine Abuse Includes the Differential Expression of Genes that Regulate Transcription, Chromatin, and Dopamine Cell Phenotype Neuropsychopharmacology 2014/08/01; 39(9):2191-2199. Epub 2014/04/16.

28. Filézac de L'Etang A et al. Marinesco-Sjögren syndrome protein SIL1 regulates motor neuron subtype-selective ER stress in ALS Nature Neuroscience January 05, 2015.

29. Miettinen TP et al. NQO2 Is a Reactive Oxygen Species Generating Off-Target for Acetaminophen. Mol Pharm 2014/12/01; 11(12):4395-4404. Epub 2014/10/14.

30. Arimappamagan A et al. (2013) A Fourteen Gene GBM Prognostic Signature Identifies Association of Immune Response Pathway and Mesenchymal Subtype with High Risk Group. PLoS ONE 2013-04-30.

31. Liu X et al. The novel triterpenoid RTA 408 protects human retinal pigment epithelial cells against H2O2-induced cell injury via NF-E2-related factor 2 (Nrf2) activation. Redox Biol, 2015 Dec 19; 8:98-109. Epub 2015 Dec 19.

32. Lindskog C et al. (2010) Antibody-based proteomics for discovery and exploration of proteins expressed in pancreatic islets. Discov Med Jun;9(49):565-78.

33. Toyokawa G et al. Histone Lysine Methyltransferase Wolf-Hirschhorn Syndrome Candidate 1 Is Involved in Human Carcinogenesis through Regulation of the Wnt Pathway. Neoplasia 2011/10/01; 13(10):887-898.

34. Bachmann J et al. (2014) Affinity proteomics reveals elevated muscle proteins in plasma of children with cerebral malaria. PLoS Pathog. Apr;10(4):e1004038.

35. Chakraborty G et al. (2012) Semaphorin 3A suppresses tumor growth and metastasis in mice melanoma model. PLoS One 7(3):e33633.

Development

DNA-binding protein SATB2 is required for initiation of the upper-layer neurons specific genetic program and for inactivation of deep-layer neurons specific genes. Here illustrated by Anti-SATB2 antibody AMAb90679 in rat brain. Note strong nuclear immunoreactivity in cerebral cortex and in the CA1 layer of the hippocampus and absence of positivity in the dentate gyrus.

Product Name	Product Number	Applications (human tissues)	Antigen seq identity to mouse/rat
Anti-CRBN	AMAb91227	WB	96 / 97 %
Anti-ENG	AMAb90925	IHC	66 / 22%
Anti-ENG	HPA0118621	IHC,WB,ICC-IF	66 / 22%
Anti-FABP7	AMAb90595	IHC,WB	89 / 90%
Anti-FABP7	HPA028825 ^{2,3}	IHC,WB	89 / 90%
Anti-FLT1	AMAb90704	IHC,WB	80 / 82%
Anti-GAP43	HPA015600 ⁴	IHC,WB	71 / 70%
Anti-CRBN	AMAb91227	WB	96 / 97 %
Anti-ENG	AMAb90925	IHC	66 / 22%
Anti-ENG	HPA0118621	IHC,WB,ICC-IF	66 / 22%
Anti-FABP7	AMAb90595	IHC,WB	89 / 90%
Anti-FABP7	HPA028825 ^{2,3}	IHC,WB	89 / 90%
Anti-FLT1	AMAb90704	IHC,WB	80 / 82%
Anti-GAP43	HPA0156004	IHC,WB	71 / 70%
Anti-GLI3	HPA005534	IHC,ICC-IF,WB	74 / 76%
Anti-MEF2C	AMAb90727	IHC,WB	97 / 47%
Anti-MEF2C	HPA0055335-8	IHC,WB,ICC-IF	97 / 47%
Anti-MKI67 (Ki67)	HPA000451 ^{9,10}	IHC,ICC-IF	66 / 67%
Anti-NACC1	HPA021238	IHC,ICC-IF	91 / 89%
Anti-NES (Nes- tin)	AMAb90556	IHC,WB	47 / 42%
Anti-NES (Nes- tin)	HPA00700711	IHC,WB,ICC-IF	47 / 42%
Anti-NKX2-2	HPA00346812,13	IHC,WB	96 / 97%
Anti-PAX6	HPA030775	IHC,ICC-IF	100 / 100%
Anti-PBK	HPA005753	IHC,WB*,ICC-IF	91 / 94%
Anti-REST	AMAb90740	IGC	41 / 43%
Anti-RUNX1	HPA004176 ¹⁴	IHC,WB,ICC-IF	93 / 93%
Anti-RUNX2	AMAb90591	IHC,WB	100 / 81%
Anti-RUNX2	HPA02204015,16	IHC,WB,ICC-IF	100 / 81%

Product Name	Product Number	Applications (human tissues)	Antigen seq identity to mouse/rat
Anti-SATB2	AMAb9067917	IHC,WB	100 / 100%
Anti-SATB2	HPA02954318	IHC,ICC-IF	100 / 100%
Anti-SOX4	HPA029901	IHC,ICC-IF	100 / 39%
Anti-SOX6	HPA00192319,20	IHC,WB,ICC-IF	96 / 96%
Anti-SOX7	HPA009065 ^{21,22}	IHC,WB	91 / 91%
Anti-SOX9	AMAb90795	IHC, WB	97 / 96%
Anti-SOX11	AMAb9050223	IHC,WB	82 / 82%
Anti-SOX11	HPA00053624-28	IHC,WB	82 / 82%
Anti-SOX30	HPA006159	IHC,WB	68 / 70%
Anti-THY1	AMAb90844	IHC,WB	64 / 68%
Anti-THY1	HPA003733	IHC	64 / 68%
Anti-TM4SF2/ TSPAN7	HPA003140 ^{29,30}	IHC,WB	96 / 96%
Anti-TM4SF2/ TSPAN7	AMAb90621	IHC,WB	96 / 96%
Anti-VANGL1	AMAb90600	WB	95 / 95%
Anti-VIM (vi- mentin)	AMAb90516	IHC,WB	99 / 99%
Anti-VIM	HPA00176231	IHC,WB*,ICC-IF	99 / 99%

* WB both in human and rodent samples

Immunohistochemical staining using the Anti-NES (Nestin) antibody AMAb90556 of human cerebral cortex shows strong immunoreactivity in the endothelial cells.

PDZ binding kinase (PBK) is expressed in neural progenitors in both the dentate gryrus and subventricular zone of the lateral ventricle in the adult rat. Here visualized using the Anti-PBK antibody (HPA005753).

1. Ziebarth AJ *et al.* Endoglin (CD105) contributes to platinum resistance and is a target for tumor-specific therapy in epithelial ovarian cancer. *Clin Cancer Res* 2013 Jan 1; 19(1):170-182. Epub 2012/11/12.

2. Tan C *et al.* Impact of Gender in Renal Cell Carcinoma: The Relationship of FABP7 and BRN2 Expression with Overall Survival. *Clin Med Insights Oncol* 2014 2821-27. Epub 2014/02/23.

3. Gromov P *et al.* FABP7 and HMGCS2 Are Novel Protein Markers for Apocrine Differentiation Categorizing Apocrine Carcinoma of the Breast. *PLoS One* 1/01/01; 9(11):e112024. Epub 2014/11/12.

4. Häggmark A *et al.* Antibody-based profiling of cerebrospinal fluid within multiple sclerosis. *Proteomics* 2013 Aug;13(15):2256-67.

5. Yelamanchili SV *et al.* MicroRNA-21 dysregulates the expression of MEF2C in neurons in monkey and human SIV/HIV neurological disease. *Cell Death Dis* 2010;1:e77.

6. Wirrig EE *et al.* Differential expression of cartilage and bone-related proteins in pediatric and adult diseased aortic valves. *J Mol Cell Cardiol* 2011 Mar; 50(3):561-569. Epub 2010 Dec 14.

7. Clark CD *et al.* Evolutionary Conservation of Nkx2.5 Autoregulation in the Second Heart Field. *Dev Biol* 2013 Feb 1; 374(1):198-209. Epub 2012/11/17.

8. Lockhart MM *et al.* Mef2c Regulates Transcription of the Extracellular Matrix Protein Cartilage Link Protein 1 in the Developing Murine Heart. *PLoS One* 8(2):e57073. Epub 2013/02/26.

9. Li S *et al.* Endothelial VEGF Sculpts Cortical Cytoarchitecture. *J Neurosci* 2013 Sep 11; 33(37):14809-14815.

10. Pohler E *et al.* Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma. *Nat Genet* 2012 Oct 14;44(11):1272-6.

11. Sellheyer K *et al.* Spatiotemporal expression pattern of neuroepithelial stem cell marker nestin suggests a role in dermal homeostasis, neovas-culogenesis, and tumor stroma development: a study on embryonic and adult human skin. *J Am Acad Dermatol* 2010 Jul;63(1):93-113.

12. Lawson MH *et al.* Two novel determinants of etoposide resistance in small cell lung cancer. Cancer Res 2011 Jul 15;71(14):4877-87.

13. Pasquali L *et al.* Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat Genet 2014 Feb;46(2):136-43.

14. Ferrari N *et al.* Expression of RUNX1 Correlates with Poor Patient Prognosis in Triple Negative Breast Cancer. *PLoS One* 1/01/01; 9(6):e100759. Epub 2014/06/26.

15. Martínez-Abadías N *et al.* From shape to cells: mouse models reveal mechanisms altering palate development in Apert syndrome. *Dis Model Mech* 2013 May; 6(3):768-779. Epub 2013/03/08.

16. McDonald L *et al.* RUNX2 correlates with subtype-specific breast cancer in a human tissue microarray, and ectopic expression of Runx2 perturbs differentiation in the mouse mammary gland. *Dis Model Mech* 2014/05/01; 7(5):525-534. Epub 2014/03/13.

17. Elebro J *et al.* Prognostic and treatment predictive significance of SATB1 and SATB2 expression in pancreatic and periampullary ade-nocarcinoma. *J Transl Med*, 2014 Oct 17; 12:289. Epub 2014 Oct 17.

18. Nodin B *et al.* Molecular correlates and prognostic significance of SATB1 expression in colorectal cancer. *Diagn Pathol* 2012 Aug 30;7:115.

19. Herlofsen SR *et al.* Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells in Self-Gelling Alginate Discs Reveals Novel Chondrogenic Signature Gene Clusters. *Tissue Eng Part A.* 2010 Apr; 17(7-8):1003-1013. Epub 2010 Dec 27.

20. Fernandes AM *et al.* Similar Properties of Chondrocytes from Osteoarthritis Joints and Mesenchymal Stem Cells from Healthy Donors for Tissue Engineering of Articular Cartilage. *PLoS One* 1/01/01; 8(5):e62994. Epub 2013/05/09.

21. Saegusa M *et al.* Sox4 functions as a positive regulator of beta-catenin signaling through upregulation of TCF4 during morular differentiation of endometrial carcinomas. *Lab Invest* 2012 Apr;92(4):511-21.

22. Hayano T *et al.* SOX7 is down-regulated in lung cancer. *J Exp Clin Cancer Res* 2013 232(1):17. Epub 2013/04/04.

23. Soldini D *et al.* Assessment of SOX11 Expression in Routine Lymphoma Tissue Sections: Characterization of New Monoclonal Antibodies for Diagnosis of Mantle Cell Lymphoma. *Am J Surg Pathol* 2014 Jan; 38(1):86-93.

24. Aiden AP *et al.* Wilms tumor chromatin profiles highlight stem cell properties and a renal developmental network. *Cell Stem Cell* 2010 Jun 4;6(6):591-602.

25. Wang X *et al.* Gene expression profiling and chromatin immunoprecipitation identify DBN1, SETMAR and HIG2 as direct targets of SOX11 in mantle cell lymphoma. *PLoS One* 2010 Nov 22;5(11):e14085.

26. Fernàndez V *et al.* Genomic and gene expression profiling defines indolent forms of mantle cell lymphoma. *Cancer Res* 2010 Feb 15;70(4):1408-18.

27. Sernbo S *et al.* The tumour suppressor SOX11 is associated with improved survival among high grade epithelial ovarian cancers and is regulated by reversible promoter methylation. *BMC Cancer* 2011 Sep 24;11:405.

28. Davidson B *et al.* The clinical role of epithelial-mesenchymal transition and stem cell markers in advanced-stage ovarian serous carcinoma effusions. *Hum Pathol* 2015 Jan; 46(1):1-8.

29. Wuttig D *et al.* CD31, EDNRB and TSPAN7 are promising prognostic markers in clear-cell renal cell carcinoma revealed by genome-wide expression analyses of primary tumors and metastases. *Int J Cancer* 2012 Sep 1; 131(5):E693-704. Epub 2012 Feb 28.

30. Lindskog C *et al.* Antibody-based proteomics for discovery and exploration of proteins expressed in pancreatic islets. *Discov Med* 2010 Jun; 9(49):565-78.

31. Yamasaki T *et al.* Tumor suppressive microR-NA-138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma. *Int J Oncol* 2012 241(3):805-817. Epub 2012/07/03.

Immunohistochemical staining using the Anti-VIM (Vimentin) antibody HPA001762 of human duodenum shows distinct positivity in mesenchymal and lymphoid cells (upper left). In glioma tissue, immunoreactivity is strong in tumor cells (lower left). Immunofluorescent staining of human cell line U-251MG shows positivity in cytoskeleton (top).

Antibodies on HPA Mouse Brain Atlas

Product Name	Product Number	Applications (human tissues)	Antigen seq identity to mouse/rat	Product Name	Product Number	Applications (human tissues)	Antigen seq identity to mouse/rat
Anti-AMPD2	HPA045760	IHC,WB,ICC-IF	99% / 99%	Anti-OTUB1	HPA039176	IHC,WB,ICC-IF	100% /
Anti-AQP4	HPA014784	IHC,WB	93% / 92%				100%
Anti-ARFGEF1	HPA023822	IHC,WB,ICC-IF	90% / 90%	Anti-PBK	HPA005753	IHC,WB,ICC-IF	91% / 94%
Anti-ARHGAP1	HPA0046891	IHC,WB,ICC-IF	98% / 98%	Anti-PCP4	HPA005792 ²¹⁻²⁴	IHC,WB	96% / 96%
Anti-BCAR1	HPA042282	IHC,WB,ICC-IF	75% / 93%	Anti-PPP1R1B	HPA048630	IHC,WB	87% / 91%
Anti-BCL11B	HPA049117	IHC	96% / 48%	Anti-QK1	HPA019123	IHC,WB,ICC-IF	100% /
Anti-BIRC3	HPA002317 ²⁻⁴	IHC,WB,ICC-IF	75% / 74%	Anti-RABGGTB	HPA026585	THC WB ICC-IE	97% / 96%
Anti-C17orf75	HPA0040615	IHC,WB,ICC-IF	84% / 83%	Anti-RAP1GAP	HPA001922	IHC WB	92% / 91%
Anti-C21orf59	HPA028849	IHC,WB	95% / 93%	Anti-RCN2	HPA030694	IHC WB ICC-IE	91% / 90%
Anti-CALB2	HPA0073053	IHC,WB,ICC-IF	98% / 98%	Anti-RPI 9	HPA003372 ^{3,25}	IHC,WB,ICC-IE	99% / 98%
Anti-CAMK2B	HPA026307	IHC,WB	96% / 96%	Anti-SCGN	HPA006641 ²⁶⁻²⁹	ІНС, МЪ, ГСС П	96% / 96%
Anti-DDX3X	HPA001648 ^{3,6}	IHC,WB	97% / 97%	Anti-SEMA3E	HPA029419	ІНС	86% / 86%
Anti-DPP6	HPA050509	IHC,WB	86% / 86%	Anti-SI C2A1	HPA031345	ІНС	100% /
Anti-DTX4	HPA059294	IHC,ICC-IF	86% / 33%	Anti-SECZAI	111 A031343	ine	100%
Anti-ECH1	HPA0058353	IHC,WB	78% / 81%	Anti-SSR3	HPA014906	IHC,WB	100% / 43%
Anti-EIF1AY	HPA002561	IHC,WB	99% / 99%	Anti-SST	HPA019472	IHC,WB	98% / 98%
Anti-FAM213B	HPA006403	IHC,WB	92% / 89%	Anti-SYNJ2BP	HPA000866	IHC,WB,ICC-IF	96% / 95%
Anti-FGF3	HPA012692	IHC,ICC-IF	80% / 81%				
Anti-FH	HPA025770	IHC,WB,ICC-IF	99% / 100%	Anti-TH	HPA061003	IHC	88% / 88%
Anti-FOXO1	HPA001252 ^{5,7}	IHC	91% / 90%	Anti-TXNL1	HPA002828	IHC,WB,ICC-IF	98% / 98%
Anti-FRMD6	HPA0012978	IHC,WB,ICC-IF	94% / 94%	Anti-UBTF	HPA006385 ³⁰	IHC,WB,ICC-IF	98% / 98%
Anti-GABRA3	HPA0008393	IHC,WB	91% / 93%	Anti-USP11	HPA037536	IHC,ICC-IF	82% / 83%
Anti-GFAP	HPA056030	IHC,WB	98% / 100%	Anti-USP48	HPA030046	IHC,WB,ICC-IF	95% / 94%
Anti-GKAP1	HPA035117	IHC,WB,ICC-IF	93% / 93%	Anti-ZNF3	HPA003719	IHC,ICC-IF	77% / 78%
Anti-GMFB	HPA0029549	IHC,WB	97% / 94%				
Anti-GOLGA5	HPA00099210	IHC,WB,ICC-IF	70% / 76%				
Anti-HSPA2	HPA00079811-13	IHC,WB	95% / 95%		1. Sector 1/102 198		
Anti-IER5	HPA029894	IHC,WB,ICC-IF	86% / 33%			STATE AND	
Anti-INA	HPA0080573	IHC,WB,ICC-IF	83% / 84%		The Carlot		
Anti-ITPKA	HPA040454	IHC,WB,ICC-IF	91% / 89%	and the second			
Anti-KIF5A	HPA004469	IHC,WB	91% / 88%	展。外信和自			安全 县合法制
Anti-LIAS	HPA018842	IHC,WB,ICC-IF	89% / 92%				
Anti-LRPAP1	HPA0080013	IHC,WB,ICC-IF	81% / 80%	20.00 - 20			NO SER LOPP
Anti-MAP2	HPA01282814,15	IHC,ICC-IF	91% / 89%	学家 为主命的			
Anti-MARS	HPA00412516	IHC,WB,ICC-IF	92% / 92%				
Anti-MBP	HPA049222	IHC,WB	97% / 97%	试验 。"韩月	A. Carlos		
Anti-NAGLU	HPA038815	IHC	88% / 89%	10月11日4			
Anti-NDUFV2	HPA00340417	IHC,WB	95% / 95%	為這種的對			
Anti-NECAB1	HPA02362918	IHC,WB	98% / 98%	法 法法律			
Anti-NECAB2	HPA01399818	IHC,ICC-IF	98% / 97%		Tata and		AL ST
Anti-NPAS2	HPA019674	IHC,WB,ICC-IF	85% / 87%				1.1.1.9015.4023
Anti-OGFOD1	HPA00321519,20	IHC,WB,ICC-IF	80% / 81%	Immunofluorescent	e IHC staining of	f mouse medulla v	vith Anti-GABRA

Immunorluorescence IHC staining of mouse medulla with Anti-GABRA3 antibody (HPA000839) shows strong immunoreactivity in neuronal processes and cell bodies.

Immunohistochemical staining of mouse cerebellum with Anti-CAMK2B antibody (HPA026307) shows neuronal positivity in Purkinje cells.

Immunohistochemical staining of mouse hypothalamus with Anti-CALB antibody (HPA007305) shows selective staining in a subset of neurons and fibers in the acrcuate nucleus.

Immunohistochemical staining of mouse hippocampus Anti-CALB antibody (HPA007305) shows selective staining in subsets of neurons and fibers in dentate gyrus.

Immunohistochemical staining of mouse cerebral cortex with Anti-MBP antibody (HPA049222) shows strong staining in myelinated fibres.

Immunofluorescence IHC staining of mouse cerebral cortex with Anti-PCP4 antibody (HPA005792) shows strong immunoreactivity in neuronal cell bodies in the deep cortical layers.

Antibodies on HPA Mouse Brain Atlas (continued)

Immunofluorescence IHC staining of mouse hypothalamus with Anti-SAYSD1 antibody (HPA007959) shows selective neuronal staining in the paraventricular nucleus.

1. Härmä V *et al.* Lysophosphatidic acid and sphingosine-1-phosphate promote morphogenesis and block invasion of prostate cancer cells in three-dimensional organotypic models. Oncogene 22012 Apr 19;31(16):2075-89.

2. Jones DR *et al.* Phase I Trial of Induction Histone Deacetylase and Proteasome Inhibition Followed by Surgery in Non-small Cell Lung Cancer. J Thorac Oncol 2012 Nov; 7(11):1683-1690.

3. Mulder J *et al.* Tissue profiling of the mammalian central nervous system using human antibody-based proteomics. *Mol Cell Proteomics* 2009 8(7):1612-22.

Mol Cell Proteonnics 2009 8(7).1612-22.

4. Almubarak H *et al.* Zoledronic acid directly suppresses cell proliferation and induces apoptosis in highly tumorigenic prostate and breast cancers. J Carcinog 2011 Jan 15;10:2.

5. Kato BS *et al.* Variance decomposition of protein profiles from antibody arrays using a longitudinal twin model. *Proteome Sci* 9:73. Epub 2011/11/17.

6. Hagerstrand D *et al.* Systematic interrogation of 3q26 identifies TLOC1 and SKIL as cancer drivers. *Cancer Discov* 2013/09/01 3(9):1044-1057. Epub 2013/06/13.

7. Sahu B *et al.* Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer *EMBO* J 2011/10/05 30(19):3962-3976. Epub 2011/09/13.

8. De Sousa E *et al.* Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. *Nat Med* 2013 May;19(5):614-8.

9. Yu Y et al.. Evaluation of blastomere biopsy using a mouse model indicates the potential high risk of neurodegenerative disorders in the offspring. *Mol Cell Proteomics* 2009 Jul;8(7):1490-500.

10. Hsu YC *et al.* Multiple domains in the Crumbs Homolog 2a (Crb2a) protein are required for regulating rod photoreceptor size. *BMC Cell Biol* 2010 Jul 29;11:60. 11. Scieglinska D *et al.* Expression, function, and regulation of the testis-enriched heat shock HSPA2 gene in rodents and humans *Cell Stress Chaperones* 2015/03/01 20(2):221-235. Epub 2014/10/25.

12. Rogon C *et al.* HSP70-binding protein HSPBP1 regulates chaperone expression at a posttranslational level and is essential for spermatogenesis. *Mol Biol Cell* 2014/08/01 25(15):2260-2271.

13. Grad I *et al.* The Molecular Chaperone Hsp90a Is Required for Meiotic Progression of Spermatocytes beyond Pachytene in the Mouse. *PLoS One* 5(12):e15770. Epub 2010/12/31.

14. Andersson S *et al.* Antibodies Biotinylated Using a Synthetic Z-domain from Protein A Provide Stringent In Situ Protein Detection *J Histochem Cytochem* 2013/11/01 61(11):773-784.

15. Pontén F *et al.* The Human Protein Atlas-a tool for pathology. *J Pathol* 2008 Dec;216(4):387-93.

16. van Meel E *et al.* Rare recessive loss-offunction methionyl-tRNA synthetase mutations presenting as a multi-organ phenotype. *BMC Med Genet* 2013 214106. Epub 2013/10/08.

17. Choi J *et al.* A Novel PGC-1a Isoform in Brain Localizes to Mitochondria and Associates with PINK1 and VDAC. *Biochem Biophys Res Commun* 2013/06/14 435(4):671-677. Epub 2013/05/17.

18. Zhang MD *et al.* Neuronal calcium-binding proteins 1/2 localize to dorsal root ganglia and excitatory spinal neurons and are regulated by nerve injury. *Proc Natl Acad Sci U S A* 2014 Mar 25;111(12):E1149-58.

19. Loenarz C *et al.* Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy. *Proc Natl Acad Sci U S A* 2014/03/18 111(11):4019-4024. Epub 2014/02/18.

20. Wehner KA *et al.* OGFOD1, a novel modulator of eukaryotic translation initiation factor 2alpha phosphorylation and the cellular response to stress. Mol Cell Biol 2010 Apr;30(8):2006-16. 21. Valero M *et al.* Determinants of different

Immunohistochemical staining of mouse hippocampus Anti-SLC2A1 antibody (HPA031345) shows strong staining in endothelial cells.

deep and superficial CA1 pyramidal cell dynamics during sharp-wave ripples. *Nature Neuroscience* July 27, 2015.

22. Hitti FL *et al.* The hippocampal CA2 region is essential for social memory. *Nature* 2014/04/03 508(7494):88-92. Epub 2014/02/23.

23. Kohara K *et al.* Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits. *Nat Neurosci* 2014 Feb; 17(2):269-79. Epub 2013 Dec 15.

24. Botcher NA *et al.* Distribution of interneurons in the CA2 region of the rat hippocampus. Front *Neuroanat* 8:104. Epub 2014/09/26.

25. Badhai J *et al.* Posttranscriptional down regulation of small ribosomal subunit proteins correlates with reduction of 18S rRNA in RPS19 deficiency. FEBS Lett 2009/06/18 583(12):2049-2053. Epub 2009/05/18.

26. Zhang MD *et al.* Neuronal calcium-binding proteins 1/2 localize to dorsal root ganglia and excitatory spinal neurons and are regulated by nerve injury. Proc Natl Acad Sci U S A 2014 Mar 25;111(12):E1149-58.

27. Mulder J *et al.* Secretagogin is a Ca2+-binding protein identifying prospective extended amygdala neurons in the developing mammalian telencephalon. *Eur J Neurosci* 2010 Jun;31(12):2166-77.

28. Attems J *et al.* Clusters of secretagogin-expressing neurons in the aged human olfactory tract lack terminal differentiation. *Proc Natl Acad* Sci U S A 2012 Apr 17;109(16):6259-64.

29. Alpár A *et al.* The renaissance of Ca2+-binding proteins in the nervous system: secretagogin takes center stage. *Cell Signal* 2012 Feb;24(2):378-87.

30. Sobol M *et al.* UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. *Nucleus* 2013 Nov 1; 4(6):478-486. Epub 2013/12/05.

Explore with confidence: Prestige Antibodies® in Colorectal Cancer Research

TATLAS ANTIBODIES

The life science business of Merck operates as MilliporeSigma in the U.S. and Canada.

Prestige Antibodies® in Colorectal Cancer Research

- 4-5 The Human Protein Atlas, Prestige Polyclonals and Prestige Monoclonals
- 6-11 Antibodies used in colorectal cancer research
- 12-13 Antibodies against ColoPrint and other gene expression test proteins
- 14-15 Antibodies against gene products elevated in colon tissue
- 16-17 Antibodies identified in the Human Protein Atlas
- 18-19 Epithelial to Mesenchymal Transition Marker Panel
- 20-21 Finding cancer biomarkers, as exemplified by RBM3, SATB2 and PODXL
 - 24 Contact

The Human Protein Atlas

Tissue Atlas

The Human Protein Atlas is Characterizing the Human Proteome

The Human Protein Atlas project has created a complete map of protein expression in all major organs and tissues in the human body^{1,2}. To accomplish this, highly specific antibodies have been developed to all protein coding human genes and protein profiling is established in a multitude of tissues and cells using tissue arrays.Applications applied are immunohistochemistry(IHC), Western blot(WB) analysis, protein array assay and immunofluorescent based confocal microscopy (ICC-IF).

The antibodies developed within the Human Protein Atlas project are carefully designed and manufactured to achieve the very highest level of specificity, reproducibility and versatility. You will find them in our catalog as Prestige Polyclonals.

The Human Protein Atlas (HPA) project was initiated in 2003 by Swedish researchers, headed by Professor Mathias Uhlén, and funded by the Knut and Alice Wallenberg foundation. It is a unique world leading effort performing systematic exploration of the human proteome using antibodies.

The Human Protein Atlas is divided into three major parts, the Tissue Atlas, Cell Atlas and Cancer Atlas. In different ways, the atlases show gene and protein expression data and make it easy to access, search and navigate.

Cell Atlas

The Tissue Atlas

For all proteins represented in the Tissue Atlas, the expression profiles are based on IHC analysis on a large number of human tissues. All IHC image scan be viewed in high resolution on the Tissue Atlas. The presentation of protein expression data in correlation to RNA sequencing data for each gene is included. Tissue microarrays containing samples from 44 different normal human tissues and from 20 different cancer types are utilized within the project. The 44 normal tissues are present in triplicate samples and annotated in 76 different cell types. All normal tissue images have undergone pathology-based annotation of expression levels and are displayed on the normal Tissue Atlas presenting information regarding the expression profiles of human genes both on mRNA and protein level. The mRNA expressiondata is derived from deep sequencing of RNA (RNASeq) from 37 major different normal tissue types.

The Cell Atlas

The Cell Atlas presents subcellular localization by confocal microscopy. The results are displayed as high resolution, multicolor images of immunofluorescently stained cells. Three human cell lines for each antibody are selected for the immunofluorescence analysis. Two cell lines from a cell line panel are chosen based on RNA sequencing data and the third cell line is always U-2 OS.

Cancer Atlas

The Cancer Atlas

The Cancer Atlas contains gene expression data based on protein expression patterns in a multitude of human cancer specimens. Altogether 216 different cancer samples, corresponding to the 20 most common forms of human cancer, have been analyzed for all included genes. All cancer tissue images have been manually annotated by pathologists and just as for the normal Tissue Atlas, protein data includes protein expression levels corresponding to over 15,000 genes for which there are available antibodies.

Validation in Normal GI tract Tissue and Colorectal Cancer Tissue Samples

IHC images from normal gastrointestinal tract samples from three different individuals are available for each antibody in the normal Tissue Atlas. The gastrointestinal tract tissues include colon, small intestine, duodenum, rectum, stomach, esophagus, salivary gland and oral mucosa.

In addition, for each antibody, colorectal tumor samples from up to 12 patients in duplicates are presented in the Cancer Atlas.

References:

1.Uhlén M *et al.* (2015) Tissue-based map of the human proteome. *Science* 347(6220):1260419.

2. Uhlén M et al. (2010) Towards a knowledgebased Human Protein Atlas. Nat Biotechnol 28(12):1248-50.

Prestige Polyclonals

The uniqueness and specificity of Prestige Polyclonals are due to a thorough selection of antigen regions, affinity purification on the recombinant antigen, validation using several methods and a stringent approval process.

Development

The Prestige Polyclonals are developed against recombinant human Protein Epitope Signature Tags (PrESTs) of approximately 50 to 150 amino acids. These protein fragments are designed, using a proprietary software, to contain unique epitopes present in the native protein suitable for triggering the generation of antibodies of high specificity. This is achieved by a complete human genome scanning to ensure that PrESTs with the lowest homology to other human proteins are used as antigens.

Approval

The approval of the Prestige Polyclonals relies on a combined validation of the experimental results using IHC, WB or ICC-IF, from RNA sequencing and from information obtained via bioinformatics prediction methods and literature. Since the literature is often inconclusive, an important objective of the HPA project has been to generate paired antibodies with non-overlapping epitopes towards the same protein target, allowing the results and validation of one antibody to be used to validate the other one.

Prestige Polyclonal catalog

Today, there are more than 21,000 Prestige Polyclonals.

The antibodies developed and characterized within the Human Protein Atlas project are supplied by Merck under the brand name Prestige Polyclonals. The product numbers of Prestige Polyclonals start with "HPA".

Prestige Monoclonals

We also provide a selected number of mouse monoclonal antibodies, under the brand name Prestige Monoclonals. The Prestige Monoclonal catalog is regularly expanding with hundreds of new products every year.

Unique Features

Special care is taken in offering clones recognizing only unique non-overlapping epitopes and/ or isotypes. Using the same stringent PrEST production process and characterization procedure as for the Prestige Polyclonals, the Prestige Monoclonals offer outstanding performance in approved applications, together with defined specificity, secured continuity and stable supply. In general they also permit high working dilutions and contribute to standardized assay procedures.

Clone Selection

Functional characterization is performed on a large number of ELISA positive cell supernatants to select the optimal clones for each application prior to subcloning and expansion of selected hybridomas.

Epitope Mapping

Clones are epitope-mapped using synthetic overlapping peptides in a bead-based array format for selection of clones with non-overlapping epitopes only.

Isotyping

All Prestige Monoclonals antibodies are isotyped to allow for multiplexing using isotype-specific secondary antibodies.

Hybridoma Cell Cultivation

Atlas Antibodies use *in-vitro* methods for the production scale-up phase" change to "In-vitro methods are used for the production scale up phase

Antibody Characterization

The characterization of Prestige Monoclonals starts with a thorough selection of the most relevant and clinically significant tissues to use for IHC characterization. In addition to positive stained tissues, a negative control tissue staining is also displayed and if relevant, clinical cancer tissue staining. The Western blot (WB) characterization includes results from endogenous human cell or tissue protein lysates or optionally recombinant full-length human protein lysates.

Each Prestige Monoclonal is thus supplied with the most relevant characterization data for its specific target.

Prestige Monoclonals are developed based on the knowledge from the Human Protein Atlas with careful antigen design and extended validation of antibody performance. With precise epitope information following all monoclonals, these precise, accurate and targeted antibodies are denoted Prestige Monoclonals.The product numbers of Prestige Monoclonals start with "AMAb".

Antibodies Used In Colorectal Cancer Research

In this section, antibodies are selected either on a reference/article-basis or on colon cancer relevance for the corresponding target protein.

Target Protein	Product Name	Product Number	Validated Applications	Target Protein	Product Name	Product Number	Validated Applications
ABCB1/CD243	Anti-ABCB1	HPA002199 ¹⁻²	IHC,ICC-IF	CEACAM1/3/5/6	Anti-CEACAM1	HPA011041	IHC,WB
ALCAM/CD166	Anti-ALCAM	HPA0109263-5	IHC	Chromogranin-A	Anti-CHGA	HPA01736923-25	IHC,WB,ICC-IF
antigen				Cytokeratin 18	Anti-KRT18	HPA001605	IHC,WB,ICC-IF
AOC3/HPAO	ANTI-AOC3	HPA0009806-8	IHC,WB	Cytokeratin 19	Anti-KRT19	HPA002465	IHC,WB,ICC-IF
APC	Anti-APC	HPA013349	IHC	Cytokeratin 20	Anti-KRT20	HPA024309	IHC,WB
AXL	Anti-AXL	HPA0374229-10	IHC,WB	Cytokeratin 20	Anti-KRT20	HPA024684	IHC,WB,ICC-IF
B-Raf	Anti-BRAF	HPA00132811-13	IHC	Cytokeratin 20	Anti-KRT20	HPA027236	IHC,WB
B-Raf	Anti-BRAF	HPA071048	ICC-IF,WB	Cytokeratin 8	Anti-KRT8	HPA049866	IHC,WB,ICC-IF
B-Raf	Anti-BRAF	AMAb91257	IHC,WB	DACH1	Anti-DACH1	HPA012672 ²⁶⁻²⁸	IHC,ICC-IF
B-Raf	Anti-BRAF	AMAb91258	IHC,WB	DCC	Anti-DCC	HPA055376	ICC-IF
BCL9	Anti-BCL9	HPA020274	IHC,ICC-IF	DCC	Anti-DCC	HPA069552	IHC
Bloom syn- drome prot	Anti-BLM	HPA00568914-15	IHC,ICC-IF	DTL	Anti-DTL	HPA028016 ²⁹	IHC,WB
Cadherin-17	Anti-CDH17	HPA02361616	IHC,WB,ICC-IF	EGFR	Anti-EGFR	HPA00120030	IHC
Cadherin-17	Anti-CDH17	HPA026556	IHC,WB,ICC-IF	EGFR	Anti-EGFR	HPA01853031-32	IHC,ICC-IF
Caldesmon	Anti-CALD1	HPA00806617-20	IHC,WB,ICC-IF	EGFR	Anti-EGFR	AMAb90816	IHC,WB
Caspase-3	Anti-CASP3	HPA002643 ²¹⁻²²	IHC,WB,ICC-IF	FCGRT	Anti-FCGRT	HPA01212233-35	IHC,WB
Catenin beta-1	Anti-CTNNB1	HPA029159	IHC,WB,ICC-IF	Fibronectin	Anti-FN1	HPA02706636	IHC,WB
Catenin beta-1	Anti-CTNNB1	HPA029160	IHC,ICC-IF	FOXRED1	Anti-FOXRED1	HPA04619237	IHC
Catenin beta-1	Anti-CTNNB1	AMAb91209	IHC,WB	GDF15	Anti-GDF15	HPA011191 ³⁸⁻⁴²	IHC,WB,ICC-IF
Catenin beta-1	Anti-CTNNB1	AMAb91210	IHC,WB	GPA33	Anti-GPA33	HPA01885843-44	IHC
CDX-2	Anti-CDX2	HPA045669	ICC-IF	GRHL2	Anti-GRHL2	HPA00482045-49	IHC,WB
CDX-2	Anti-CDX2	HPA049580	ICC-IF				

Anti-BRAF (HPA001328)

The Anti-BRAF antibody (HPA001328) shows cytoplasmic positivity in cells in seminiferous ducts in normal human testis as well as in tumor cells in colorectal cancer using immunohistochemistry. The HPA001328 antibody detects BRAF in human cell line MOLT-4 4 lysate using Western Blot analysis. Western blot analysis in human cell line MOLT-4.

Anti-EGFR (HPA018530)

1111

1

The Anti-EGFR antibody (HPA018530) shows strong cytoplasmic positivity in trophoblastic cells in human placenta tissue using IHC. By ICC-IF, the antibody shows strong positivity in plasma membrane in human cell line A-431 and in Western blot analysis, EGFR is detected in human cell line A-549 lysate.

Anti-CTNNB1 (AMAb91210)

-	and a
	22
-	10 A A
-	100
	ata .
-	-
	-
-	per-
	100
۰	-
	1
	1.

IHC staining using the Anti-CTNNB1 (AMAb91210) antibody shows strong membranous immunoreactivity in epithelial cells in normal small intestine and in tumor cells in colorectal cancer tissues. By WB analysis, Catenin beta-1 is detected in human cell line A-431. 1. Trumpi K *et al.* ABC-Transporter Expression Does Not Correlate with Response to Irinotecan in Patients with Metastatic Colorectal Cancer. *J Cancer* 2015; 6(11):1079-1086. Epub 2015 Sep 3.

2.Bernstein HG *et al.* Vascular and extravascular distribution of the ATP-binding cassette transporters ABCB1 and ABCC1 in aged human brain and pituitary. *Mech Ageing Dev.* Epub 2014 Sep 10.

3. Hansen AG *et al.* Elevated ALCAM shedding in colorectal cancer correlates with poor patient outcome. *Cancer Res* 2013 May 15; 73(10):2955-2964. Epub 2013 Mar 28

4. Ishiguro F *et al.* Membranous expression of activated leukocyte cell adhesion molecule contributes to poor prognosis and malignant phenotypes of non-small-cell lung cancer. *J Surg Res* 2013 Jan; 179(1):24-32. Epub 2012 Sep 7.

5.Kahlert C *et al.* Increased expression of ALCAM/ CD166 in pancreatic cancer is an independent prognostic marker for poor survival and early tumour relapse. *Br J Cancer* 2009 Aug 4; 101(3):457-64. Epub 2009 Jul 14.

6. Ward ST *et al.* Evaluation of serum and tissue levels of VAP-1 in colorectal cancer. *BMC Cancer* 2016 Feb 24; 16:154. Epub 2016 Feb 24.

7. Weston CJ *et al.* Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. *J Clin Invest* 2015 Feb; 125(2):501-520. Epub 2014 Dec 22..

8. Ek S *et al.* From gene expression analysis to tissue microarrays: a rational approach to identify therapeutic and diagnostic targets in lymphoid malignancies. *Mol Cell Proteomics* 2006 Jun; 5(6):1072-81. Epub 2006 Mar 8.

9. Ong CW *et al.* The prognostic value of the stem-like group in colorectal cancer using a panel of immunohistochemistry markers. *Oncotarget* 2015 May 20; 6(14):12763-12773. Epub 2015 Mar 26.

10. Pinato DJ *et al.* The expression of AxI receptor tyrosine kinase influences the tumour phenotype and clinical outcome of patients with malignant pleural mesothelioma. *Br J Cancer* 2013 Feb 19; 108(3):621-628. Epub 2013 Jan 29.

11. Cao L *et al.* Clinical characteristics and molecular pathology of skull ectopic thyroid cancer. *Ann Transl Med* 2016 Dec 19; 4(23):462. 12. Kiel C *et al.* The yin-yang of kinase activation and unfolding explains the peculiarity of Val600 in the activation segment of BRAF. *eLife* 2016 Jan 8; 5:e12814. Epub 2016 Jan 8.

13. Beltran-Sastre V *et al.* Tuneable endogenous mammalian target complementation via multiplexed plasmid-based recombineering. *Sci Rep* 2015 Nov 27; 5:17432. Epub 2015 Nov 27.

Anti-EGFR (AMAb90816)

The Anti-EGFR (AMAb90816) shows strong membranous positivity in trophoblasts in human placenta tissue using IHC and by Western Blot analysis, EGFR is detected in human A-431 cell line lysate. 14. Meena JK *et al.* Telomerase abrogates aneuploidy-induced telomere replication stress, senescence and cell depletion. *EMBO J* 2015 May 12; 34(10):1371-1384. Epub 2015 Mar 27.

15. Lao VV *et al.* Altered RECQ Helicase Expression in Sporadic Primary Colorectal Cancers. *Transl Oncol* 2013 Aug; 6(4):458-469. Epub 2013 Aug 1.

16.Magnusson K *et al.* SATB2 in combination with cytokeratin 20 identifies over 95% of all colorectal carcinomas. *Am J Surg Pathol* 2011 Jul; 35(7):937-48.

17. Alexandre Calon *et al.* Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. *Nature Genetics* February 23, 2015.

18. Stadler C *et al.* Systematic validation of antibody binding and protein subcellular localization using siRNA and confocal microscopy. *J Proteomics* 2012 Apr 3; 75(7):2236-51. Epub 2012 Feb 15.

19. Fagerberg L *et al*. Mapping the subcellular protein distribution in three human cell lines. *J Proteome Res* 2011 Aug 5; 10(8):3766-77. Epub 2011 Jun 29.

20. Köhler CN. Histochemical Localization of Caldesmon in the CNS and Ganglia of the Mouse. J Histochem Cytochem 2011 May; 59(5):504-517.

21. Flanagan L *et al.* Low levels of Caspase-3 predict favourable response to 5FU-based chemotherapy in advanced colorectal cancer: Caspase-3 inhibition as a therapeutic approach. *Cell Death Dis* 2016 Feb 4; 7(2):e2087-. Epub 2016 Feb 4.

22. Contín MA et al. Photoreceptor damage induced by low-intensity light: model of retinal degeneration in mammals. *Mol Vis* 2013; 19:1614-1625. Epub 2013 Jul 25.

23. Chen JH *et al.* A recellularized human colon model identifies cancer driver genes. *Nature Biotechnology* July 11, 2016.

24. Marbiah MM *et al*. Identification of a gene regulatory network associated with prion replication. *EMBO J* 2014 Jul 17; 33(14):1527-1547. Epub 2014 May 19.

25.Kiflemariam S *et al.* Scalable in situ hybridization on tissue arrays for validation of novel cancer and tissue-specific biomarkers. *PLoS One* 2012; 7(3):e32927. Epub 2012 Mar 8.

26. TZhou J *et al.* DACH1, a Zona Glomerulosa Selective Gene in the Human Adrenal, Activates Transforming Growth Factor-β Signaling and Suppresses Aldosterone Secretion. *Hypertension* 2015 May; 65(5):1103-1110. Epub 2015 Apr 8.

27. Powe DG *et al.* DACH1: Its Role as a Classifier of Long Term Good Prognosis in Luminal Breast Cancer. *PLoS One* 2014; 9(1):e84428. Epub 2014 Jan 2.

28. Vonlanthen J *et al.* A comprehensive look at transcription factor gene expression changes in colorectal adenomas. *BMC Cancer* 2014 Jan 29; 14:46. Epub 2014 Jan 29.

29. Karaayvaz M *et al.* Prognostic significance of miR-215 in colon cancer. *Clin Colorectal Cancer* 2011 Dec; 10(4):340-7. Epub 2011 Jul 12.
30. Hudson EP *et al.* Multiplex epitope mapping using bacterial surface display reveals both linear and conformational epitopes. *Sci Rep* 2012; 2:706. Epub 2012 Oct 4.

31. Luke GP *et al.* Sentinel lymph node biopsy revisited: ultrasound-guided photoacoustic detection of micrometastases using molecularly targeted plasmonic nanosensors. *Cancer Res* 2014 Oct 1; 74(19):5397-5408. Epub 2014 Aug 8.

32. Arabi A et al. Proteomic screen reveals Fbw7 as a modulator of the NF- κ B pathway. Nat Commun 2012; 3:976.

33. Ko SY *et al.* Enhanced neonatal Fc receptor function improves protection against primate SHIV infection. *Nature* 2014 Oct 30; 514(7524):642-645. Epub 2014 Aug 13.

34. Baker K *et al.* Neonatal Fc Receptor Expression in Dendritic Cells Mediates Protective Immunity Against Colorectal Cancer. *Immunity* 2013 Dec 12; 39(6):1095-1107. Epub 2013 Nov 27.

35. Seijsing J *et la.* Robust expression of the human neonatal Fc receptor in a truncated soluble form and as a full-length membrane-bound protein in fusion with eGFP. *PLoS One* 2013; 8(11):e81350. Epub 2013 Nov 18.

36. Kwon CH *et al.* Snail and serpinA1 promote tumor progression and predict prognosis in colorectal cancer. *Oncotarget* 2015 Aug 21; 6(24):20312-20326. Epub 2015 Apr 29.

37. Fei W *et al.* High FOXRED1 expression predicted good prognosis of colorectal cancer. *Am J Cancer Res* 2016 Nov 1; 6(11):2722-2728. Epub 2016 Nov 1.

38. Lee J *et al.* Reconstitution of TGFBR2-Mediated Signaling Causes Upregulation of GDF-15 in HCT116 Colorectal Cancer Cells. *PLoS One* 2015; 10(6):e0131506. Epub 2015 Jun 26

 Wallin U et al. Growth differentiation factor
 a prognostic marker for recurrence in colorectal cancer. Br J Cancer 2011 May 10; 104(10):1619-1627. Epub 2011 Apr 5.

40. Ishige T *et al.* Combined Secretomics and Transcriptomics Revealed Cancer-Derived GDF15 is Involved in Diffuse-Type Gastric Cancer Progression and Fibroblast Activation. *Sci Rep* 2016 Feb 19; 6:21681. Epub 2016 Feb 19.

41. Uchiyama T *et al.* The role of growth differentiation factor 15 in the pathogenesis of primary myelofibrosis. *Cancer Med* 2015 Oct; 4(10):1558-1572. Epub 2015 Aug 15.

42. Urakawa N *et al.* GDF15 derived from both tumor-associated macrophages and esophageal squamous cell carcinomas contributes to tumor progression via Akt and Erk pathways. *Laboratory Investigation* March 02, 2015.

43. Chen JH *et al.* A recellularized human colon model identifies cancer driver genes. *Nature Biotechnology* July 11, 2016.

44. Wu CC *et al.* Candidate Serological Biomarkers for Cancer Identified from the Secretomes of 23 Cancer Cell Lines and the Human Protein Atlas. *Mol Cell Proteomics* 2010 Jun; 9(6):1100-1117. Epub 2010 Feb 1.

 Quan Y et al. Grainyhead-like 2 Promotes Tumor Growth and is Associated with Poor Prognosis in Colorectal Cancer. J Cancer 2015; 6(4):342-350. Epub 2015 Feb 15.

46. Quan Y et al. Downregulation of GRHL2 inhibits the proliferation of colorectal cancer cells by targeting ZEB1. Cancer Biol Ther 2014 Jul; 15(7):878-887. Epub 2014 Apr 22.

47. Gao X *et al.* Evidence for multiple roles for grainyhead-like 2 in the establishment and maintenance of human mucociliary airway epithelium. *Proc Natl Acad Sci U S A* 2013 Jun 4; 110(23):9356-9361. Epub 2013 May 20.

48. Chung VY *et al.* GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. *Sci Rep* 2016 Feb 18; 6:19943. Epub 2016 Feb 18.

Antibodies Used In Colorectal Cancer Research (continued)

49. Cieply B *et al.* Epithelial-mesenchymal transition and tumor suppression are controlled by a reciprocal feedback loop between ZEB1 and Grainyhead-like-2. *Cancer Res* 2013 Oct 15; 73(20):6299-6309. Epub 2013 Aug 13.

0. Brenna Ø et al. Cellular localization of guanylin and uroguanylin mRNAs in human and rat duodenal and colonic mucosa. *Cell Tissue Res* 2016 Apr 5; 365:331-341. Epub 2016 Apr 5.

51. Brenna Ø et al. The guanylate cyclase-C signaling pathway is down-regulated in inflammatory bowel disease. Scand J Gastroenterol 2015; 50(10):1241-1252. Epub 2015 May 15.

52. Wilson C *et al.* The paracrine hormone for the GUCY2C tumor suppressor, guanylin, is universally lost in colorectal cancer. *Cancer Epidemiol Biomarkers Prev* 2014 Nov; 23(11):2328-2337. Epub 2014 Oct 10.

53. Gustbée E *et al.* Tumor-specific expression of HMG-CoA reductase in a population-based cohort of breast cancer patients. *BMC Clin Pathol* 2015; 15:8. Epub 2015 May 20.

54. Bengtsson E *et al.* HMG-CoA reductase expression in primary colorectal cancer correlates with favourable clinicopathological characteristics and an improved clinical outcome. *Diagn Pathol* 2014 Apr 7; 9:78. Epub 2014 Apr 7.

55. Bjarnadottir O *et al.* Targeting HMG-CoA reductase with statins in a window-of-opportunity breast cancer trial. *Breast Cancer Res Treat* 2013 Apr; 138(2):499-508. Epub 2013 Mar 8.

56. Tanaka T *et al*. Cimetidine and Clobenpropit Attenuate Inflammation-Associated Colorectal Carcinogenesis in Male ICR Mice. *Cancers (Basel)* 2016 Feb 20; 8(2):25. Epub 2016 Feb 20.

57. Vellinga TT *et al.* Collagen-rich stroma in aggressive colon tumors induces mesenchymal gene expression and tumor cell invasion. *Oncogene* March 21, 2016.

58. Haley SA *et al*. Human Polyomavirus Receptor Distribution in Brain Parenchyma Contrasts with Receptor Distribution in Kidney and Choroid Plexus. *Am J Pathol* 2015 Jun 6; 185(8):2246-2258.

59. De Sousa E Melo F *et al.* Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. *Nat Med* 2013 May; 19(5):614-8. Epub 2013 Apr 14.

60. O'Dwyer D *et al.* The Proteomics of Colorectal Cancer: Identification of a Protein Signature Associated with Prognosis. *PLoS One* 2011; 6(11):e27718. Epub 2011 Nov 18.

61. Gambaro K *et al.* Low levels of IGFBP7 expression in high-grade serous ovarian carcinoma is associated with patient outcome. *BMC Cancer* 2015 Mar 17; 15:135. Epub 2015 Mar 17.

62. Calon A *et al*. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. *Nature Genetics* February 23, 2015.

63. Chugh S *et al.* Pilot study identifying myosin heavy chain 7, desmin, insulin-like growth factor 7, and annexin A2 as circulating biomarkers of human heart failure. *Proteomics* 2013 Aug; 13(15):2324-2334. Epub 2013 Jul 1.

64. Sukhdeo K et al. Multiplex Flow Cytometry Barcoding and Antibody Arrays Identify Surface Antigen Profiles of Primary and Metastatic Colon Cancer Cell Lines. *PLoS One* 2013; 8(1):e53015. Epub 2013 Jan 7.

65. Kielosto M *et al.* Identification of integrins alpha6 and beta7 as c-Jun- and transformation-relevant genes in highly invasive fibrosarcoma cells. *Int J Cancer* 2009 Sep 1; 125(5):1065-73.

66. Croner RS *et al.* Quantitative proteome profiling of lymph node positive vs. negative colorectal carcinomas pinpoints MX1 as a marker for lymph node metastasis. *Int J Cancer* 2014 Dec 15; 135(12):2878-2886. Epub 2014 May 12.

67. Chen JH *et al.* A recellularized human colon model identifies cancer driver genes. *Nature Biotechnology* July 11, 2016.

68. Candido S *et al.* Roles of neutrophil gelatinase-associated lipocalin (NGAL) in human cancer. *Oncotarget* 2014 Mar 30; 5(6):1576-1594. Epub 2014 Feb 1.

69. McLean MH *et al.* Expression of neutrophil gelatinase-associated lipocalin in colorectal neoplastic progression: a marker of malignant potential?. *Br J Cancer* 2013 Jun 25; 108(12):2537-2541. Epub 2013 Jun 4.

70. Rathore KI *et al.* Lipocalin 2 plays an immunomodulatory role and has detrimental effects after spinal cord injury. *J Neurosci* 2011 Sep 21; 31(38):13412-9.

71. Ayadi M *et al.* Chronic chemotherapeutic stress promotes evolution of stemness and WNT/ beta-catenin signaling in colorectal cancer cells: implications for clinical use of WNT-signaling inhibitors. *Oncotarget* 2015 Jul 30; 6(21):18518-18533. Epub 2015 May 11.

72. Qu B *et al.* Testing Stem Cell Therapy in a Rat Model of Inflammatory Bowel Disease: Role of Bone Marrow Stem Cells and Stem Cell Factor in Mucosal Regeneration. *PLoS One* 2014; 9(10):e107891. Epub 2014 Oct 13.

73. Oeztuerk-Winder F *et al.* Regulation of human lung alveolar multipotent cells by a novel p38a MAPK/miR-17-92 axis. *EMBO J* 2012 Aug 15; 31(16):3506. Epub 2012 Aug 15.

74. Walker F *et al.* LGR5 Is a Negative Regulator of Tumourigenicity, Antagonizes Wnt Signalling and Regulates Cell Adhesion in Colorectal Cancer Cell Lines. *PLoS One* 2011; 6(7):e22733. Epub 2011 Jul 28.

75. Roeckel N *et al.* High frequency of LMAN1 abnormalities in colorectal tumors with microsatellite instability. *Cancer Res* 2009 Jan 1; 69(1):292-9.

76. Hashimoto S *et al.* Lysophosphatidic acid activates Arf6 to promote the mesenchymal malignancy of renal cancer. *Nat Commun* 2016 Feb 8; 7:10656. Epub 2016 Feb 8.

77. Leve F *et al.* LPA Induces Colon Cancer Cell Proliferation through a Cooperation between the ROCK and STAT-3 Pathways. *PLoS One* 2015; 10(9):e0139094. Epub 2015 Sep 29.

78. Kuriyama S *et al.* In vivo collective cell migration requires an LPAR2-dependent increase in tissue fluidity. *J Cell Biol* 2014 Jul 7; 206(1):113-127.

79. Leve F *et al.* LPA Induces Colon Cancer Cell Proliferation through a Cooperation between the ROCK and STAT-3 Pathways. *PLoS One* 2015; 10(9):e0139094. Epub 2015 Sep 29.

80. Koelzer VH *et al.* Heterogeneity analysis of Metastasis Associated in Colon Cancer 1 (MACC1) for survival prognosis of colorectal cancer patients: a retrospective cohort study. *BMC Cancer* 2015 Mar 21; 15:160. Epub 2015 Mar 21.

81. Ge Y *et al.* Positive MACC1 expression correlates with invasive behaviors and postoperative liver metastasis in colon cancer. *Int J Clin Exp Med* 2015; 8(1):1094-1100. Epub 2015 Jan 15.

82. Isella C *et al*. Stromal contribution to the colorectal cancer transcriptome. *Nature Genetics* February 23, 2015.

83. Danielsson F *et al.* RNA deep sequencing as a tool for selection of cell lines for systematic subcellular localization of all human proteins. *J Proteome Res* 2013 Jan 4; 12(1):299-307. Epub 2012 Dec 20.

84. Ferguson HJ *et al.* Glutamate dependent NMDA receptor 2D is a novel angiogenic tumour endothelial marker in colorectal cancer. *Oncotarget* 2016 Mar 1; 7(15):20440-20454. Epub 2016 Mar 1.

 Lawson DA et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. *Nature* 2015 Oct 1; 526(7571):131-135. Epub 2015 Sep 23.

86. Lane DJ *et al.* N-myc Downstream Regulated 1 (NDRG1) Is Regulated by Eukaryotic Initiation Factor 3a (eIF3a) during Cellular Stress Caused by Iron Depletion. *PLoS One* 2013; 8(2):e57273. Epub 2013 Feb 21.

87. Mao Z et al. The Metastasis Suppressor, N-myc Downregulated Gene 1 (NDRG1), Is a Prognostic Biomarker for Human Colorectal Cancer. *PLoS One* 2013; 8(7):e68206. Epub 2013 Jul 9.

88. Drögemüller C *et al.* A Deletion in the N-Myc Downstream Regulated Gene 1 (NDRG1) Gene in Greyhounds with Polyneuropathy. *PLoS One* 2010 Jun 22; 5(6):e11258. Epub 2010 Jun 22.

89. Schilling SH *et al.* NDRG4 Is Required for Cell Cycle Progression and Survival in Glioblastoma Cells. *J Biol Chem* 2009 Sep 11; 284(37):25160-25169. Epub 2009 Jul 10.

Anti-GRHL2 (HPA004820)

The Anti-GRHL2 antibody (HPA004820) shows strong nuclear positivity in glandular cells in human prostate tissue as well as in squamous epithelial cells in human skin tissue using IHC.

Anti-KRT19 (HPA002465)

The Anti-KRT19 antibody (HPA002465) shows strong cytoplasmic and membranous positivity in glandular cells in human duodenum tissue using IHC. ICC-IF staining of human cell line MCF7 shows localization to intermediate filaments.

Anti-MACC1 (HPA020103)

The Anti-KRT20 antibody (HPA024309) shows strong cytoplasmic and membranous positivity in glandular cells in colon tissue using IHC. Cytokeratin 20 ist detected using Western blot analysis in small intestine tissue lysate.

Anti-MUC1 (HPA004179)

The Anti-MUC1 antibody (HPA004179) shows cytoplasmic and membranous positivity in glandular cells in normal stomach and in tumor cells in colorectal cancer.

Anti-KRT20 (HPA024309)

The Anti-KRT20 antibody (HPA024309) shows strong cytoplasmic and membranous positivity in glandular cells in colon tissue using IHC. Cytokeratin 20 ist detected using Western blot analysis in small intestine tissue lysate.

Anti-FCGRT (HPA012122)

By IHC, the Anti-FCGRT antibody (HPA012122) shows cytoplasmic positivity in Hofbauer cells in human placenta tissue. In Western blot analysis , FCGRT is detected in human cell line THP1 lysate.

Anti-KIT (AMAb90901)

The Anti-KIT antibody (AMAb90901) shows strong immunoreactivity in a subset of lymphoid cells (macrophages) in colon tissue. In Western blot analysis , KIT is detected in human cell line RT-4 lysate.

Target Protein	Product Name	Product Number	Validated Applications
Guanylin	Anti-GUCA2A	HPA018215 ⁵⁰⁻⁵²	IHC,WB
HMGCR	Anti-HMGCR	HPA00833853-55	IHC
HRH4	Anti-HRH4	HPA03500956	IHC
HTRB	Anti-HTRB	HPA01286757-59	IHC,ICC-IF
IDH1	Anti-IDH1	HPA03524860	IHC,WB
IGFBP7/IBP-7	Anti-IGFBP7	HPA00219661-63	IHC,WB
Integrin alpha-6	Anti-ITGA6	HPA01269664-65	IHC,WB
IRF2BP1	Anti-IRF2BP1	HPA04216466	IHC,WB
KIT	Anti-KIT	AMAb90901	IHC,WB
KIT	Anti-KIT	AMAb90904	IHC,WB
KIT	Anti-KIT	HPA004471	IHC
KIT	Anti-KIT	HPA073252	ICC-IF
KRAS/HRAS/ NRAS	Anti-KRAS	HPA049830	IHC
LAMB2/S-LAM beta	Anti-LAMB2	HPA00189567	IHC,WB
LCN2/NGAL/p25	Anti-LCN2	HPA00269568-70	IHC,WB
LGR5	Anti-LGR5	HPA01253071-74	IHC,WB

Target Protein	Product Name	Product Number	Validated Applications
LMAN1/ER- GIC-53	Anti-LMAN1	HPA00232075	IHC,WB
LPAR2	Anti-LPAR2	HPA01961676-78	IHC,WB
LPAR3	Anti-LPAR3	HPA01342179	IHC,WB,ICC-IF
MACC1	Anti-MACC1	HPA02010380-81	IHC,WB
MAP1B	Anti-MAP1B	HPA02227582-83	IHC,ICC-IF
MCAM/MUC18	Anti-MCAM	HPA00884884	IHC
MGAT5/GNT-V	Anti-MGAT5	HPA010919	IHC,WB
MLH1/COCA2	Anti-MLH1	HPA052707	IHC,WB,ICC-IF
MLH1/COCA2	Anti-MLH1	HPA060714	ICC-IF
MSH6/GTBP	Anti-MSH6	HPA028376	IHC,WB,ICC-IF
MSH6/GTBP	Anti-MSH6	HPA028446	IHC
MUC3/MUC3A	Anti-MUC3A	HPA010871	IHC
Mucin-1	Anti-MUC1	HPA004179	IHC,WB
Mucin-1	Anti-MUC1	HPA007235	IHC
Mucin-1	Anti-MUC1	HPA00885585	IHC,ICC-IF
NDRG1	Anti-NDRG1	HPA00688186-89	IHC,WB,ICC-IF

Antibodies Used In Colorectal Cancer Research (continued)

90. Röwer C *et al.* Toponostics of invasive ductal breast carcinoma: combination of spatial protein expression imaging and quantitative proteome signature analysis. *Int J Clin Exp Pathol* 2011 Mar 31; 4(5):454-467. Epub 2011 Feb 28.

91. O'Dwyer D *et al.* The Proteomics of Colorectal Cancer: Identification of a Protein Signature Associated with Prognosis. *PLoS One* 2011; 6(11):e27718. Epub 2011 Nov 18.

92. Hedström E *et al.* Downregulation of the cancer susceptibility protein WRAP53 β in epithelial ovarian cancer leads to defective DNA repair and poor clinical outcome. *Cell Death Dis* 2015 Oct 1; 6(10):e1892-. Epub 2015 Oct 1.

93. Qi G *et al.* PARP6 acts as a tumor suppressor via downregulating Survivin expression in colorectal cancer. *Oncotarget* 2016 Feb 25; 7(14):18812-18824. Epub 2016 Feb 25.

94. Huang JY *et al.* PARP6 is a Regulator of Hippocampal Dendritic Morphogenesis. *Sci Rep* 2016 Jan 4; 6:18512. Epub 2016 Jan 4.

95. Calon A *et al.* Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. *Nature Genetics* February 23, 2015.

96. Edlund K *et al.* CD99 is a novel prognostic stromal marker in non-small cell lung cancer. *Int J Cancer* 2012 Nov 15; 131(10):2264-73. Epub 2012 Apr 24.

97. Ibarrola-Villava M et al. Deregulation of ARID1A, CDH1, cMET and PIK3CA and targetrelated microRNA expression in gastric cancer. Oncotarget 2015 Sep 29; 6(29):26935-26945. Epub 2015 Jul 27.

98. Won HS et al. Difference in expression of EGFR, pAkt, and PTEN between oropharyngeal and oral cavity squamous cell carcinoma. Oral Oncol 2012 Oct; 48(10):985-90. Epub 2012 Jun 8.

99. McCaughan F et al. Progressive 3q Amplification Consistently Targets SOX2 in Preinvasive Squamous Lung Cancer. Am J Respir Crit Care Med 2010 Jul 1; 182(1):83-91. Epub 2010 Mar 18.

100. Ikeya T *et al.* The combined expression of Semaphorin4D and PlexinB1 predicts disease recurrence in colorectal cancer. *BMC Cancer* 2016 Jul 25; 16:525. Epub 2016 Jul 25.

101. Larsson A *et al.* Overexpression of podocalyxin-like protein is an independent factor of poor prognosis in colorectal cancer. *Br J Cancer* 2011 Aug 23; 105(5):666-72. Epub 2011 Aug 9.

102. Borg D *et al.* Expression of podocalyxinlike protein is an independent prognostic biomarker in resected esophageal and gastric adenocarcinoma. *BMC Clin Pathol* 2016 Jul 29; 16:13. Epub 2016 Jul 29.

103. Heby M *et al.* Prognostic and predictive significance of podocalyxin-like protein expression in pancreatic and periampullary adenocarcinoma. *BMC Clin Pathol* 2015; 15:10. Epub 2015 May 30. 104. Saukkonen K *et al.* Podocalyxin Is a Marker of Poor Prognosis in Pancreatic Ductal Adenocarcinoma. *PLoS One* 2015; 10(6):e0129012.

105. Boman K *et al.* Membranous expression of podocalyxin-like protein is an independent factor of poor prognosis in urothelial bladder cancer. *Br J Cancer* 2013 Jun 11; 108(11):2321-2328. Epub 2013 May 7.

106. Hjelm B *et al*. High nuclear RBM3 expression is associated with an improved prognosis in colorectal cancer. *Proteomics Clin Appl* 2011 Dec; 5(11-12):624-35.

107. Florianova L *et al.* Evaluation of RNA-binding motif protein 3 expression in urothelial carcinoma of the bladder: an immunohistochemical study. *World J Surg Oncol* 2015 Nov 14; 13(None):317.

108. Olofsson SE *et al.* Low RBM3 Protein Expression Correlates with Clinical Stage, Prognostic Classification and Increased Risk of Treatment Failure in Testicular Non-Seminomatous Germ Cell Cancer. *PLoS One* 2015; 10(3):e0121300.

109. Boman K *et al.* Decreased expression of RNA-binding motif protein 3 correlates with tumour progression and poor prognosis in urothelial bladder cancer. *BMC Urol* 2013 Apr 8; 13(None):17.

110. Nodin B *et al.* High MCM3 expression is an independent biomarker of poor prognosis and correlates with reduced RBM3 expression in a prospective cohort of malignant melanoma. *Diagn Pathol* 2012 Jul 17; 7:82. Epub 2012 Jul 17.

111. Hjelm B *et al.* High nuclear RBM3 expression is associated with an improved prognosis in colorectal cancer. *Proteomics Clin Appl* 2011 Dec; 5(11-12):624-35.

112. Hjelm B *et al.* Generation of monospecific antibodies based on affinity capture of polyclonal antibodies. *Protein Sci* 2011 Nov; 20(11):1824-35. Epub 2011 Oct 12.

113. Jögi A *et al.* Nuclear expression of the RNA-binding protein RBM3 is associated with an improved clinical outcome in breast cancer. *Mod Pathol* 2009 Dec; 22(12):1564-74. Epub 2009 Sep 4.

114. Arora A *et al.* Clinicopathological and prognostic significance of RECQL5 helicase expression in breast cancers. *Carcinogenesis* 2015 Nov 19; 37(1):63-71. Epub 2015 Nov 19.

115. Lao VV *et el.* Altered RECQ Helicase Expression in Sporadic Primary Colorectal Cancers. *Transl Oncol* 2013 Aug; 6(4):458-469. Epub 2013 Aug 1.

116. Stadler C *et al.* Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. *Nat Methods* 2013 Apr; 10(4):315-23. Epub 2013 Feb 24.

117. Qundos U *et al.* Profiling post-centrifugation delay of serum and plasma with antibody bead arrays. *J Proteomics* 2013 Dec 16; 95:46-54. Epub 2013 Apr 28.

118. Luo Y *et al.* RET is a potential tumor suppressor gene in colorectal cancer. *Oncogene* 2013 Apr 18; 32(16):2037-2047. Epub 2012 Jul 2.

119. Tsofack SP *et al.* NONO and RALY proteins are required for YB-1 oxaliplatin induced resistance in colon adenocarcinoma cell lines. *Mol Cancer* 2011 Nov 25; 10:145. Epub 2011 Nov 25. 120. Sanz-Pamplona R *et al.* Aberrant gene expression in mucosa adjacent to tumor reveals a molecular crosstalk in colon cancer. *Mol Cancer* 2014 Mar 5; 13:46. Epub 2014 Mar 5.

121. Nodin B *et al.* Molecular correlates and prognostic significance of SATB1 expression in colorectal cancer. *Diagn Pathol* 2012 Aug 30; 7:115. Epub 2012 Aug 30.

122. Park WC *et al.* Comparative expression patterns and diagnostic efficacies of SR splicing factors and HNRNPA1 in gastric and colorectal cancer. *BMC Cancer* 2016 Jun 10; 16:358. Epub 2016 Jun 10.

123. Park WC et al. Comparative expression patterns and diagnostic efficacies of SR splicing factors and HNRNPA1 in gastric and colorectal cancer. *BMC Cancer* 2016 Jun 10; 16:358. Epub 2016 Jun 10.

124. Park WC *et al.* Comparative expression patterns and diagnostic efficacies of SR splicing factors and HNRNPA1 in gastric and colorectal cancer. *BMC Cancer* 2016 Jun 10; 16:358. Epub 2016 Jun 10.

125. Babel I *et al.* Identification of MST1/STK4 and SULF1 proteins as autoantibody targets for the diagnosis of colorectal cancer by using phage microarrays. *Mol Cell Proteomics* 2011 Mar; 10(3):M110.001784. Epub 2011 Jan 12.

126. Pan W *et al.* CSBF/C10orf99, a novel potential cytokine, inhibits colon cancer cell growth through inducing G1 arrest. *Sci Rep* 2014 Oct 29; 4:6812. Epub 2014 Oct 29.

127. Lindgren D *et al.* Isolation and characterization of progenitor-like cells from human renal proximal tubules. *Am J Pathol* 2011 Feb; 178(2):828-37.

128. ZHAO XQ *et al.* Promoter demethylation of nuclear factor-erythroid 2-related factor 2 gene in drug-resistant colon cancer cells. *Oncol Lett* 2015 Sep; 10(3):1287-1292. Epub 2015 Jul 8.

129. Barazeghi E *et al.* 5-Hydroxymethylcytosine discriminates between parathyroid adenoma and carcinoma. *Clin Epigenetics* 1/01/01; 8:31. Epub 2016 Mar 12.

130. Jackstadt R *et al.* AP4 is a mediator of epithelial-mesenchymal transition and metastasis in colorectal cancer. *J Exp Med* 2013 Jul 1; 210(7):1331-1350.

131. Zhu J *et al.* TGFBI protein high expression predicts poor prognosis in colorectal cancer patients. *Int J Clin Exp Pathol* 2015; 8(1):702-710. Epub 2015 Jan 1.

132. Kuot A *et al.* Association of TCF4 and CLU polymorphisms with Fuchs' endothelial dystrophy and implication of CLU and TGFBI proteins in the disease process. *Eur J Hum Genet* 2012 Jun; 20(6):632-638. Epub 2012 Jan 11.

133. Kashyap MK *et al.* SILAC-based quantitative proteomic approach to identify potential biomarkers from the esophageal squamous cell carcinoma secretome. *Cancer Biol Ther* 2010 Oct 15; 10(8):796-810. Epub 2010 Oct 7.

134. Chen JH *et al.* A recellularized human colon model identifies cancer driver genes. *Nature Biotechnology* July 11, 2016.

135. McIntyre BA *et al.* Expansive Generation of Functional Airway Epithelium From Human Embryonic Stem Cells. *Stem Cells Transl Med* 2014 Jan; 3(1):7-17. Epub 2013 Dec 3.

136. Takahashi H *et al.* Prognostic significance of Traf2- and Nck- interacting kinase (TNIK) in colorectal cancer. *BMC Cancer* 2015 Oct 24; 15:794. Epub 2015 Oct 24.

137. Yu DH *et al.* The essential role of TNIK gene amplification in gastric cancer growth. *Oncogenesis* 2014 Feb 24; 2:e89. Epub 2014 Feb 24.

138. Isella C *et al.* Stromal contribution to the colorectal cancer transcriptome. *Nature Genetics* February 23, 2015.

139. De Sousa E Melo F *et al.* Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. *Nat Med* 2013 May; 19(5):614-8. Epub 2013 Apr 14.

140. O'Dwyer D *et al.* The Proteomics of Colorectal Cancer: Identification of a Protein Signature Associated with Prognosis. *PLoS One* 2011; 6(11):e27718. Epub 2011 Nov 18.

141. Isella C *et al.* Stromal contribution to the colorectal cancer transcriptome. *Nature Genetics* February 23, 2015.

142. Flanagan L *et al.* Low levels of Caspase-3 predict favourable response to 5FU-based chemotherapy in advanced colorectal cancer: Caspase-3 inhibition as a therapeutic approach. *Cell Death Dis* 2016 Feb 4; 7(2):e2087-. Epub 2016 Feb 4.

143. Lehmann W *et al.* ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. *Nat Commun* 2016 Feb; 7:10498. Epub 2016 Feb 15.

144. Barbáchano A *et al.* SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. *Oncogene* October 12, 2015.

145. Fessler E *et al.* TGF β signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. *EMBO Mol Med* 2016 May 24; 8(7):745-760. Epub 2016 May 24.

146. Fukumoto M *et al.* a-Actinin-4 Enhances Colorectal Cancer Cell Invasion by Suppressing Focal Adhesion Maturation. *PLoS One* 2015; 10(4):e0120616. Epub 2015 Apr 10.

		reb,	7.10496. Epub 20
Target Protein	Product Name	Product Number	Validated Applications
Nucleophosmin	Anti-NPM1	HPA01138490-91	IHC,WB,ICC-IF
P53	Anti-P53 Anti- body	AMAb9095692	IHC,WB,ICC-IF
PARP6	Anti-PARP6	HPA02699193-94	IHC,ICC-IF
Periostin	Anti-POSTN	HPA01230695-96	IHC,WB
PIK3CA	Anti-PIK3CA	HPA00998597-99	IHC,ICC-IF
Plexin-B1	Anti-PLXNB1	HPA040586100	IHC
PMS2/PMSL2	Anti-PMS2	HPA070310	ICC-IF
PMS2/PMSL2	Anti-PMS2	HPA066490	ICC-IF
Podocalyxin	Anti-PODXL	HPA002110101-105	IHC,WB,ICC-IF
PTP4A1/2/3	Anti-PTP4A1	HPA003281	IHC,WB
RBM3	Anti-RBM3	AMAb90655106-110	IHC,WB,ICC-IF
RBM3	Anti-RBM3	HPA003624111-113	IHC,WB,ICC-IF
RECQL5	Anti-RECQL5	HPA029971114-116	IHC,WB,ICC-IF
RET	Anti-RET	HPA008356117-118	IHC,ICC-IF
RIBC2	Anti-RIBC2	HPA003210119	IHC
ROBO2	Anti-ROBO2	HPA013371120	IHC,WB,ICC-IF
SATB2	Anti-SATB2	HPA029543121	IHC,ICC-IF
SATB2	Anti-SATB2	AMAb90679	IHC,WB
Semaphorin-4D	Anti-SEMA4D	HPA015662	IHC,WB
Serpin A1	Anti-SERPI- NA1	HPA000927	IHC,WB,ICC-IF
SIX1	Anti-SIX1	HPA001893	IHC,WB,ICC-IF
SORD	Anti-SORD	HPA040260	IHC,WB,ICC-IF
SOX9	Anti-SOX9	HPA001758	IHC,WB,ICC-IF

Target Protein	Product Name	Product Number	Validated Applications
SOX21	Anti-SOX21	AMAb91309	IHC,WB
SOX21	Anti-SOX21	AMAb91311	IHC,WB
SRC	Anti-SRC	HPA030875	IHC,WB,ICC-IF
SRSF5	Anti-SRSF5	HPA043484122	IHC,WB,ICC-IF
SRSF6	Anti-SRSF6	HPA029005123	IHC,WB
SRSF7	Anti-SRSF7	HPA043850124	IHC,WB,ICC-IF
STK4/MST-1	Anti-STK4	HPA015270125	IHC,WB,ICC-IF
SUSD2	Anti-SUSD2	HPA004117126-127	IHC,ICC-IF
TAK1/TR4/ NR2C2	Anti-NR2C2	HPA006313	IHC,WB,ICC-IF
TET1	Anti-TET1	HPA019032128-129	IHC,ICC-IF
TFAP4	Anti-TFAP4	HPA001912130	IHC,WB,ICC-IF
TGFB1	Anti-TGFB1	HPA008612131-133	IHC,WB
TIMP1/EPA	Anti-TIMP1	HPA053417	IHC
TJP1	Anti-TJP1	HPA001636134-135	IHC,WB,ICC-IF
TNIK	Anti-TNIK	HPA012128136-137	IHC,ICC-IF
TRAF6	Anti-TRAF6	HPA019805	IHC,WB,ICC-IF
TRAF6	Anti-TRAF6	HPA020599	IHC,WB
Transgelin	Anti-TAGLN	HPA019467138	IHC,WB,ICC-IF
Willin/FRMD6	Anti-FRMD6	HPA001297139	IHC,WB,ICC-IF
YWHAB/KCIP-1	Anti-YWHAB	HPA011212 ¹⁴⁰	IHC,WB,ICC-IF
ZEB1/TCF-8	Anti-ZEB1	HPA027524141-145	IHC,WB,ICC-IF
ZEB1/TCF-8	Anti-ZEB1	AMAb90510	IHC,WB,ICC-IF
Zyxin	Anti-ZYX	HPA004835146	IHC,WB,ICC-IF

Anti-ZEB1 (AMAb90510)

Shows strong nuclear positivity in the stromal, but not glandular cells in endometrium tissue using IHC. ICC-IF shows nuclear staining in

the human A-549 cell line. The antibody signal is downregulated using ZEB1-specific siRNA probes in extracts from RH-30 cells, shown by WB analysis.

ANTI-P53 (AMAb90956)

Shows strong nuclear immunoreactivity in tumor cells in human colorectal cancer using IHC. ICC-IF staining in A431 cell line shows cell cycle dependent nuclear (without

nuclear (without nucleoli) staining. The antibody signal is downregulated using p53-specific siRNA probes in extracts from U-251 cells, shown by WB analysis.

э.

÷

ANTI-SIX1 (HPA001893)

Shows strong nuclear positivity in striated muscle fibers in human skeletal muscle using IHC. ICC-IF staining of human cell line U-251 MG shows positivity in

nucleus but excluded from the nucleoli. Western blot analysis detects SIX1 in human cell line RH-30.

ANTI-SOX9 (HPA001758)

Shows moderate to strong nuclear positivity in tumor cells in human colorectal cancer using IHC. ICC-IF staining of human cell line U-251 MG shows positivity in nucleus but excluded

from the nucleoli. Western blot analysis detects SOX9 in human cell line HepG2.

Antibodies against gene products in Oncotype and Coloprint tests

Oncotype DX (developed by Genomic Health) is the most frequently used gene expression profile in clinical practice in the United States analyzing a panel of 21 genes within a tumor to determine a Recurrence Score.

1. Bateman NW et al. Elevated AKAP12 in Paclitaxel-Resistant Serous Ovarian Cancer Cells is Prognostic and Predictive of Poor Survival in Patients. J Proteome Res 2015 Apr 3; 14(4):1900-1910. Epub 2015 Mar 19.

2. O'Hurley G et al. Investigation of molecular alterations of AKT-3 in triple-negative breast cancer. Histopathology 2014 Apr; 64(5):660-70. Epub 2013 Dec 12.

3. Stadler C et al. Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat Methods 2013 Apr; 10(4):315-23. Epub 2013 Feb 24.

4, Vredeveld LC et al. Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis Genes Dev 2012 May 15; 26(10):1055-1069.

5. Alexandre Calon a et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nature Genetics February 23, 2015.

6. Stadler C et al. Systematic validation of antibody binding and protein subcellular localization using siRNA and confocal microscopy. J Proteomics 2012 Apr 3; 75(7):2236-51. Epub 2012 Feb 15

7. Fagerberg L et al. Mapping the subcellular protein distribution in three human cell lines. J Proteome Res 2011 Aug 5; 10(8):3766-77. Epub 2011 Jun 29.

8. Köhler CN. Histochemical Localization of Caldesmon in the CNS and Ganglia of the Mouse. J Histochem Cytochem 2011 May; 59(5):504-517.

9. Qundos U et al. Profiling post-centrifugation delay of serum and plasma with antibody bead arrays. J Proteomics 2013 Dec 16; 95:46-54. Epub 2013 Apr 28.

10. Andersson S et al. Antibodies Biotinylated Using a Synthetic Z-domain from Protein A Provide Stringent In Situ Protein Detection. Histochem Cytochem 2013 Nov; 61(11):773-784.

11. Köhler CN. Histochemical Localization of Caldesmon in the CNS and Ganglia of the Mouse. J Histochem Cytochem 2011 May; 59(5):504-517.

12. Van Bockstal M et al. Differential regulation of extracellular matrix protein expression in carcinoma-associated fibroblasts by TGF-β1 regulates cancer cell spreading but not adhesion. Oncoscience 2014; 1(10):634-648. Epub 2014 Oct 15.

13. Stadler C et al. Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat Methods 2013 Apr; 10(4):315-23. Epub 2013 Feb 24

14. Kato BS et al. Variance decomposition of protein profiles from antibody arrays using a longitudinal twin model. Proteome Sci 2011 Nov 17; 9:73. Epub 2011 Nov 17.

15. Kato BS et al. Variance decomposition of protein profiles from antibody arrays using a longitudinal twin model. Proteome Sci 2011 Nov 17; 9:73. Epub 2011 Nov 17.

16. Michela Locci et al. Activin A programs the differentiation of human TFH cells. Nature Immunology July 04, 2016.

17. Howley BV et al. Translational regulation of Inhibin βA by TGFβ via the RNA-binding protein hnRNP E1 enhances the invasiveness of epithelialto-mesenchymal transitioned cells. Oncogene 2016/03/31; 35(13):1725-1735. Epub 2015 Jun 22.

18. Wamsley JJ et al. Activin Upregulation by NF-KB is Required to Maintain Mesenchymal Features of Cancer Stem-like Cells in Non-Small Cell Lung Cancer. Cancer Res 2015/01/15; 75(2):426-435. Epub 2014 Nov 28.

19. Gambaro K et al. Low levels of IGFBP7 expression in high-grade serous ovarian carcinoma is associated with patient outcome. BMC Cancer 2015 Mar 17; 15:135. Epub 2015 Mar 17.

20. Calon A et al. Stromal gene expression defines poor-prognosis subtypes in colorectal

staining of human muscle tissue

using the Anti-CALD1 antibody (HPA008066) shows cytoplasmic positivity in smooth muscle cells. Using ICC-IF in U2-OS cells, the antibody stains actin filament and plasma membrane. CALD1 is detected in cell line U-138 MG cell line.

Anti-AKAP12 (HPA006344)

IHC staining of human testis tissue using the Anti-AKAP12 antibody (HPA006344)

shows cytoplasmic and membranous positivity in seminiferous ducts. ICC-IF staining of human cell line U-251 MG shows localization to plasma membrane and cytosol. cancer. Nature Genetics February 23, 2015.

21. Chugh S et al. Pilot study identifying myosin heavy chain 7, desmin, insulin-like growth factor 7, and annexin A2 as circulating biomarkers of human heart failure. Proteomics 2013 Aug; 13(15):2324-2334. Epub 2013 Jul 1.

22. Muehlich S et al. The transcriptional coactivators megakaryoblastic leukemia 1/2 mediate the effects of loss of the tumor suppressor deleted in liver cancer 1. Oncogene 2012 Aug 30; 31(35):3913-23. Epub 2011 Dec 5.

23. Rizzardi AE et al. Evaluation of protein biomarkers of prostate cancer aggressiveness. BMC Cancer 2014 Apr 5; 14:244. Epub 2014 Apr 5.

24. Zhang G et al. Validation and clinicopathologic associations of a urine-based bladder cancer biomarker signature. Diagn Pathol 2014 Nov 12; 9:200. Epub 2014 Nov 12.

25. Stadler C et al. Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells.. Nat Methods 2013 Apr; 10(4):315-23. Epub 2013 Feb 24.

26. den Boon JA et al. Molecular transitions from papillomavirus infection to cervical precancer and cancer: Role of stromal estrogen receptor signaling. *Proc Natl Acad Sci U S A* 2015 Jun 23; 112(25):E3255-E3264. Epub 2015 Jun 8.

27. Laguë MN et al. Decidual PTEN expression is required for trophoblast invasion in the mouse. Am J Physiol Endocrinol Metab 2010 Dec; 299(6):E936-E946. Epub 2010 Sep 21.

28. Zhu J et al. TGFBI protein high expression predicts poor prognosis in colorectal cancer patients. Int J Clin Exp Pathol 2015; 8(1):702-710. Epub 2015 Jan 1.

29. Kuot A et al. Association of TCF4 and CLU polymorphisms with Fuchs' endothelial dystrophy and implication of CLU and TGFBI proteins in the disease process. Eur J Hum Genet 2012 Jun; 20(6):632-638. Epub 2012 Jan 11.

Anti-PLIN3 (HPA006427)

IHC staining of human small intestine tissue using the Anti-PLIN3

antibody (HPA006427) shows positivity in glandular cells. ICC-IF in A-431 cell line shows positivity in lipid droplets. PLIN3 is detedted in cell line U-87 MG lysate using WB

Anti-S100A4 (AMAb90598)

IHC staining of human rectum tissue using the Anti-S100A4 antibody (AMAb90598)

shows strong immunoreactivity in a subset of lymphoid cells. In ICC-IF, in BJ cells, plasma membrane is stained.

analysis.

30. Kashyap MK *et al.* SILAC-based quantitative proteomic approach to identify potential biomarkers from the esophageal squamous cell carcinoma secretome. *Cancer Biol Ther* 2010 Oct 15; 10(8):796-810. Epub 2010 Oct 7.

31. Li S *et al.* Endothelial VEGF Sculpts Cortical Cytoarchitecture. *J Neurosci* 2013 Sep 11; 33(37):14809-14815.

32. Pohler E *et al*. Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma. *Nat Genet* 2012 Nov; 44(11):10.1038/ng.2444. Epub 2012 Oct 14.

33. Roca H et al. IL-4 induces proliferation in prostate cancer PC3 cells under

Target Protein	Product Name	Product	Validated	
	Name	Number	Applications	
AKAP12	Anti-AKAP12	HPA0063441	IHC,ICC-IF	
AKAP12	Anti-AKAP12	HPA056230	IHC,ICC-IF	
AKT3	Anti-AKT3	HPA026441 ²⁻⁴	IHC,WB	
Caldesmon	Anti-CALD1	HPA0080665-8	IHC,WB,ICC-IF	
Caldesmon	Anti-CALD1	HPA017330 ⁹⁻¹¹	IHC,WB,ICC-IF	
ANTXR1	Anti-ANTXR1	HPA052046	IHC	
Biglycan	Anti-BGN	HPA00315712-13	IHC,WB,ICC-IF	
Collagen alpha-1	Anti-COL1A1	HPA008405	IHC	
Collagen alpha-1	Anti-COL1A1	HPA011795	IHC,ICC-IF	
SPARC	Anti-SPARC	HPA00298914	IHC,WB	
SPARC	Anti-SPARC	HPA00302015	IHC,WB	
CTHRC1/NMTC1	Anti-CTHRC1	HPA059806	IHC,WB	
FAP	Anti-FAP	HPA059739	IHC	
Inhibin beta A chain	Anti-INHBA	HPA02003116-18	IHC	
LOXL2	Anti-LOXL2	HPA036257	ICC-IF	
LOXL2	Anti-LOXL2	HPA056542	ICC-IF	
TGFB3	Anti-TGFB3	HPA063582	ICC-IF	
PDGFC	Anti-PDGFC	HPA009134	IHC,ICC-IF	
IGFBP7	Anti-IGFBP7	HPA00219619-21	IHC,WB	
SFRP4	Anti-SFRP4	HPA009712	IHC,WB	
SFRP4	Anti-SFRP4	HPA050585	IHC,WB	
DLC1	Anti-DLC1	HPA017753 ²²	IHC,WB,ICC-IF	
EGR1	Anti-EGR1	HPA029938	ICC-IF	
EGR1	Anti-EGR1	HPA029937	ICC-IF	
GADD45B	Anti- GADD45B	HPA029816 ²³	IHC,ICC-IF	
SERPINE1/PAI1	Anti-SERPI- NE1	HPA050039 ²⁴	IHC,ICC-IF	
SPP1/OPN	Anti-SPP1	HPA02754125	IHC,WB	
S100A4	Anti-S100A4	HPA007973 ²⁶⁻²⁷	IHC,WB	
S100A4	Anti-S100A4	AMAb90596	IHC,WB,ICC-IF	
S100A4	Anti-S100A4	AMAb90598	IHC,WB,ICC-IF	
S100A4	Anti-S100A4	AMAb90599	IHC,WB,ICC-IF	
HSPA1A	Anti-HSPA1A	HPA052504	IHC,WB	
TGFBI	Anti-TGFBI	HPA008612 ²⁸⁻³⁰	IHC,WB	
TGFBI	Anti-TGFBI	HPA017019	IHC,WB	
GRB10	Anti-GRB10	HPA027502	IHC	
LAMC2	Anti-LAMC2	HPA024638	IHC	
LAMC2	Anti-LAMC2	AMAb91098	IHC,WB	
CDKN2A/P14ARF	Anti-CDKN2A	HPA047838	ICC-IF	
CDC20	Anti-CDC20	HPA055288	IHC,WB	
CDC20	Anti-CDC20	HPA045842	ICC-IF	
Ki-67/MKI67	Anti-MKI67	AMAb90870	IHC	

nutrient-depletion stress through the activation of the JNK-pathway and survivin upregulation

J Cell Biochem 2012 May; 113(5):1569-1580.

34. Röwer C *et al.* Toponostics of invasive ductal breast carcinoma: combination of spatial protein expression imaging and quantitative proteome signature analysis. *Int J Clin Exp Pathol* 2011 Mar 31; 4(5):454-467. Epub 2011 Feb 28.

35. Akil A *et al.* Septin 9 induces lipid droplets growth by a phosphatidylinositol-5-phosphate and microtubule-dependent mechanism hijacked by HCV. *Nat Commun* 2016 Jul 15; 7:12203. Epub 2016 Jul 15.

Target Protein	Product Name	Product Number	Validated Applications
Ki-67/MKI67	Anti-MKI67	HPA000451 ³¹⁻³²	IHC,ICC-IF
Ki-67/MKI67	Anti-MKI67	HPA00116433	IHC,ICC-IF
MCM2	Anti-MCM2	HPA031495	IHC,WB,ICC-IF
MCM2	Anti-MCM2	HPA031496	IHC,WB,ICC-IF
RRM1	Anti-RRM1	HPA057265	IHC,ICC-IF
RRM1	Anti-RRM1	HPA064297	IHC
RRM2	Anti-RRM2	HPA056994	IHC,WB,ICC-IF
SKP2	Anti-SKP2	HPA051196	WB,ICC-IF
SKP2	Anti-SKP2	HPA054633	IHC,WB
MYC/CMYC	Anti-MYC	HPA055893	IHC,ICC-IF
MYC/CMYC	Anti-MYC	HPA066556	ICC-IF
CSEL1/CSE1L	Anti-CSE1L	HPA038059	IHC,WB,ICC-IF
CSEL1/CSE1L	Anti-CSE1L	HPA038060	IHC,ICC-IF
MYBL2	Anti-MYBL2	HPA030530	IHC,WB
MYBL2	Anti-MYBL2	HPA055416	ICC-IF
NME1/GAAD	Anti-NME1	HPA008467 ³⁴	IHC,WB,ICC-IF
NME1/GAAD	Anti-NME1	HPA041113	IHC,WB
UMPS/OPRT	Anti-UMPS	HPA036178	IHC,WB,ICC-IF
UMPS/OPRT	Anti-UMPS	HPA036179	IHC
HNRPD	Anti-HNRNPD	HPA004911	IHC,WB,ICC-IF
MCTP1	Anti-MCTP1	HPA019018	IHC,WB,ICC-IF
LAMA3	Anti-LAMA3	HPA009309	IHC
LAMA3	Anti-LAMA3	AMAb91123	IHC,WB
CTSC/Cathepsin C	Anti-CTSC	HPA066610	WB,ICC-IF
PYROXD1	Anti-PY- ROXD1	HPA038319	IHC,WB
PYROXD1	Anti-PY- ROXD1	HPA038320	IHC,WB,ICC-IF
EDEM1	Anti-EDEM1	HPA029565	IHC,ICC-IF
IL2RB/CD122	Anti-IL2RB	HPA062657	IHC,WB
ZNF697	Anti-ZNF697	HPA049933	IHC,ICC-IF
SLC6A11/GAT-3	Anti-SLC6A11	HPA037981	IHC,WB
IL2RA/CD25	Anti-IL2RA	HPA054622	IHC
CYFIP2	Anti-CYFIP1	HPA068106	IHC,WB
PIM3	Anti-PIM3	HPA068758	ICC-IF
LIF	Anti-LIF	HPA018844	IHC,ICC-IF
Perilipin-3/PLIN3	Anti-PLIN3	HPA00642735	IHC,WB,ICC-IF
Perilipin-3/PLIN3	Anti-PLIN3	HPA066538	IHC,WB,ICC-IF
HSD3B1	Anti-HSD3B1	HPA043261	IHC
HSD3B1	Anti-HSD3B1	HPA043264	IHC
HSD3B1	Anti-HSD3B1	HPA044028	IHC
ZBED4	Anti-ZBED4	HPA045341	IHC,ICC-IF
PPARA	Anti-PPARA	HPA067049	WB,ICC-IF
THNSL2	Anti-THNSL2	HPA035395	IHC

Antibodies against gene products elevated in colon identified in the Human Protein Atlas

The genes included in this section show at least 5-fold higher mRNA levels in colon tissue compared to all other human tissues. Antibodies against these gene products are presented.

Anti-FCGBP (HPA003564)

The Anti-FCGBP antibody (HPA003564) shows strong cytoplasmic positivity in glandular cells in human colorectal cancer and normal rectum tissue using IHC.

Anti-CDH17 (HPA023614)

-

The Anti-CDH17 antibody (HPA023614) shows membranous positivity in glandular cells in human duodenum tissue using IHC. In ICC-IF, CDH17 is localized to cell junctions in human cell line CACO-2.

Anti-PIGR (HPA012012)

The Anti-PIGR antibody (HPA012012) shows strong cytoplasmic and membranous positivity in glandular cells in human colon and in tumor cells in colorectal cancer tissue using IHC. PIGR is detected in colon tissue lysate using Western blot analysis.

1. Hu X *et al.* Low CA II expression is associated with tumor aggressiveness and poor prognosis in gastric cancer patients *Int J Clin Exp Pathol* 2014; 7(10):6716-6724. Epub 2014 Sep 15.

2. Magnusson K *et al.* SATB2 in combination with cytokeratin 20 identifies over 95% of all colorectal carcinomas. *Am J Surg Pathol* 2011 Jul; 35(7):937-48.

3. Erickson NA *et al.* The Goblet Cell Protein Clca1 (Alias mClca3 or Gob-5) Is Not Required for Intestinal Mucus Synthesis, Structure and Barrier Function in Naive or DSS-Challenged Mice. *PLoS One* 2015; 10(7):e0131991. Epub 2015 Jul 10.

4. Okudela K *et al.* Down-regulation of FXYD3 expression in human lung cancers: its mechanism and potential role in carcinogenesis. *Am J Pathol* 2009 Dec; 175(6):2646-56. Epub 2009 Nov 5.

5. Brenna Ø et al. Cellular localization of guanylin and uroguanylin mRNAs in human and rat duodenal and colonic mucosa. *Cell Tissue Res* 2016 Apr 5; 365:331-341. Epub 2016 Apr 5.

6. Brenna Ø et al. The guanylate cyclase-C signaling pathway is down-regulated in

inflammatory bowel disease. *Scand J Gastroenterol* 2015; 50(10):1241-1252. Epub 2015 May 15.

7. Wilson C *et al.* The paracrine hormone for the GUCY2C tumor suppressor, guanylin, is universally lost in colorectal cancer. *Cancer Epidemiol Biomarkers Prev* 2014 Nov; 23(11):2328-2337. Epub 2014 Oct 10.

8. Bonner C *et al.* Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. *Nature Medicine April* 20, 2015.

9. Mezentsev A *et al.* Global Gene Expression Responses to Low- or High-Dose Radiation in a Human Three-Dimensional Tissue Model. *Radiat Res* 2011 Jun; 175(6):677-688. Epub 2011 Apr 12.

10. Fristedt R *et al.* Expression and prognostic significance of the polymeric immunoglobulin receptor in esophageal and gastric adenocarcinoma. *J Transl Med* 2014 Apr 2; 12:83. Epub 2014 Apr 2.

11. Fristedt R *et al.* Reduced Expression of the Polymeric Immunoglobulin Receptor in Pancreatic

Anti-HNF4A (HPA004712)

The Anti-HNF4A antibody (HPA004712) shows strong nuclear positivity in glandular cells in human small intestine using IHC. Using ICC-IF, HNF4A was localized to nucleoplasm in cell line CACO-2. HNF4A was detected in human cell line HepG2 using WB analysis.

Anti-SLC9A3 (HPA036669)

The Anti-SLC9A3 antibody (HPA036669) shows strong apical membrane positivity in glandular cells in human small intestine and in colorectal cancer tissues using immunohistochemistry.

and Periampullary Adenocarcinoma Signifies Tumour Progression and Poor Prognosis. *PLoS One* 2014; 9(11):e112728. Epub 2014 Nov 14.

12. Berntsson J *et al.* Expression and prognostic significance of the polymeric immunoglobulin receptor in epithelial ovarian cancer. *J Ovarian Res* 2014 Feb 26; 7:26. Epub 2014 Feb 26.

13. Trevisi P *et al.* Age-Related Expression of the Polymeric Immunoglobulin Receptor (pIgR) in the Gastric Mucosa of Young Pigs. *PLoS One* 2013; 8(11):e81473. Epub 2013 Nov 13.

14. Hjelm B *et al.* Generation of monospecific antibodies based on affinity capture of polyclonal antibodies. *Protein Sci* 2011 Nov; 20(11):1824-35. Epub 2011 Oct 12.

15. Magnusson K *et al.* SATB2 in combination with cytokeratin 20 identifies over 95% of all colorectal carcinomas. *Am J Surg Pathol* 2011 Jul; 35(7):937-48.

16. Wensman H *et al.* Extensive expression of craniofacial related homeobox genes in canine mammary sarcomas. *Breast Cancer Res Treat* 2009 Nov; 118(2):333-43. Epub 2008 Dec 2.

17. Ek S *et al.* From gene expression analysis to tissue microarrays: a rational approach to identify therapeutic and diagnostic targets in lymphoid malignancies. *Mol Cell Proteomics* 2006 Jun; 5(6):1072-81. Epub 2006 Mar 8.

18. Nodin B *et al.* Molecular correlates and prognostic significance of SATB1 expression in colorectal cancer. *Diagn Pathol* 2012 Aug 30; 7:115. Epub 2012 Aug 30.

Target Protein	Product Name	Product Number	Validated Applications	
B3GNT6	Anti-B3GNT6	HPA039805	IHC	
C10orf99	Anti-C10orf99	HPA050920	IHC	
CA1	Anti-CA1	HPA006558	IHC	
CA2	Anti-CA2	HPA001550 ¹	IHC,WB	
CD177	Anti-CD177	HPA041820	IHC	
CD177	Anti-CD177	HPA046601	IHC	
CDH17	Anti-CDH17	HPA023614	IHC,WB	
CDH17	Anti-CDH17	HPA023616 ²	IHC,WB,ICC-IF	
CDH17	Anti-CDH17	HPA026556	IHC,WB,ICC-IF	
CDHR5	Anti-CDHR5	HPA009081	IHC	
CDHR5	Anti-CDHR5	HPA009173	IHC,WB	
CDX1	Anti-CDX1	HPA055196	IHC	
CDX2	Anti-CDX2	HPA045669	ICC-IF	
CDX2	Anti-CDX2	HPA049580	ICC-IF	
CEACAM1/3/5/6	Anti-CEA- CAM1	HPA011041	IHC,WB	
CEACAM5	Anti-CEA- CAM5	HPA019758	IHC,WB,ICC-IF	
CEACAM7	Anti-CEA- CAM7	HPA069621	IHC	
Claudin-3	Anti-CLDN3	HPA014361	IHC,ICC-IF	
CLCA1	Anti-CLCA1	HPA052787	IHC	
CLCA1	Anti-CLCA1	HPA059301	IHC	
DHRS11	Anti-DHRS11	HPA041226	IHC,ICC-IF	
DHRS11	Anti-DHRS11	HPA048236	IHC	
DHRS11	Anti-DHRS11	HPA053623	IHC	
ENTPD8	Anti-ENTPD8	HPA021509	IHC,ICC-IF	
FABP1	Anti-FABP1	HPA028275	IHC,WB,ICC-IF	
FCGBP	Anti-FCGBP	HPA003517 ³	IHC	
FCGBP	Anti-FCGBP	HPA003564	IHC,ICC-IF	
FUT3/5/6	Anti-FUT3	HPA046966	IHC	
FXYD3	Anti-FXYD3	HPA0108564	IHC,ICC-IF	
GAL3ST2	Anti-GAL3ST2	HPA071809	IHC	
Galectin-4	Anti-LGALS4	HPA031184	IHC	
Galectin-4	Anti-LGALS4	HPA031185	IHC	
Galectin-4	Anti-LGALS4	HPA031186	IHC,WB	
GPA33	Anti-GPA33	HPA018858	IHC	
GUCA2A	Anti-GUCA2A	HPA0182155-7	IHC,WB	
HNF4A	Anti-HNF4A	HPA004712 ⁸⁻⁹	IHC,WB,ICC-IF	
HSD11B2	Anti-HSD11B2	HPA042186	IHC	

19. Andersson S *et al.* Antibodies Biotinylated Using a Synthetic Z-domain from Protein A Provide Stringent In Situ Protein Detection. *J Histochem Cytochem* 2013 Nov; 61(11):773-784.

20. Kiflemariam S *et al.* Scalable in situ hybridization on tissue arrays for validation of novel cancer and tissue-specific biomarkers. *PLoS One* 2012; 7(3):e32927. Epub 2012 Mar 8.

Target Protein	Product Name	Product Number	Validated Applications
HSD11B2	Anti-HSD11B2	HPA056385	IHC,ICC-IF
INSL5	Anti-INSL5	HPA030100	IHC,WB
Keratin 20	Anti-KRT20	HPA024309	IHC,WB
Keratin 20	Anti-KRT20	HPA024684	IHC,WB,ICC-IF
Keratin 20	Anti-KRT20	HPA027236	IHC,WB
MEP1A	Anti-MEP1A	HPA029416	IHC
MISP	Anti-MISP	HPA049511	IHC,WB,ICC-IF
MISP	Anti-MISP	HPA062232	IHC,WB,ICC-IF
MS4A12	Anti-MS4A12	HPA057657	IHC
MUC13	Anti-MUC13	HPA045163	IHC,WB
NOXO1	Anti-NOXO1	HPA071540	IHC,WB
NXPE1	Anti-NXPE1	HPA049133	IHC,WB
NXPE2	Anti-NXPE2	HPA039744	IHC
NXPE2	Anti-NXPE2	HPA039876	IHC
PADI2	Anti-PADI2	HPA047735	IHC,WB
PHGR1	Anti-PHGR1	HPA068787	IHC,ICC-IF
PIGR	Anti-PIGR	HPA006154	IHC
PIGR	Anti-PIGR	HPA012012 ¹⁰⁻¹³	IHC,WB
РҮҮ	Anti-PYY	HPA010973	IHC
REG4	Anti-REG4	HPA046555	IHC
SATB2	Anti-SATB2	HPA00104214-17	IHC
SATB2	Anti-SATB2	HPA02954318	IHC,ICC-IF
SATB2	Anti-SATB2	AMAb90679	IHC,ICC-IF
SLC22A18AS	Anti-SL- C22A18AS	HPA068288	IHC,WB,ICC-IF
SLC26A2	Anti-SLC26A2	HPA058090	IHC,WB
SLC9A3	Anti-SLC9A3	HPA036493	IHC,ICC-IF
SLC9A3	Anti-SLC9A3	HPA036669	IHC,WB
SPINK4	Anti-SPINK4	HPA007286	IHC,ICC-IF
SULT1B1	Anti-SULT1B1	HPA002107	IHC,WB,ICC-IF
Tetraspanin 8	Anti-TSPAN8	HPA044337	IHC,ICC-IF
TFF3	Anti-TFF3	HPA035464	IHC,ICC-IF
TPH1	Anti-TPH1	HPA022483	IHC
UGT2B17	Anti-UGT2B4	HPA045108	IHC
VIL1	Anti-VIL1	HPA00688419	IHC,WB,ICC-IF
VIL1	Anti-VIL1	HPA00688520	IHC,WB
VIP	Anti-VIP	HPA017324	IHC
ZG16	Anti-ZG16	HPA052066	IHC,WB
ZG16	Anti-ZG16	HPA052512	IHC,WB

Antibodies identified in the Human Protein Atlas

In this section, antibodies are selected based on identified differential IHC staining patterns in colon and colorectal cancer samples.

1. Tsuneki M *et al.* A Hydrogel-Endothelial Cell implant Mimics Infantile Hemangioma: Modulation by Survivin and the Hippo pathway*. *Lab Invest* 2015 May 11; 95(7):765-780. Epub 2015 May 11.

2. Zhou J *et al.* DACH1, a Zona Glomerulosa Selective Gene in the Human Adrenal, Activates Transforming Growth Factor- β Signaling and Suppresses Aldosterone Secretion. *Hypertension* 2015 May; 65(5):1103-1110. Epub 2015 Apr 8.

3. Powe DG *et al.* DACH1: Its Role as a Classifier of Long Term Good Prognosis in Luminal Breast Cancer. *PLoS One* 2014; 9(1):e84428. Epub 2014 Jan 2.

4. Vonlanthen J *et al.* A comprehensive look at transcription factor gene expression changes in colorectal adenomas. *BMC Cancer* 2014 Jan 29; 14:46. Epub 2014 Jan 29.

5. Stadler C *et al.* Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. *Nat Methods* 2013 Apr; 10(4):315-23. Epub 2013 Feb 24.

6. Kim D *et al.* SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. *Nature* April 08, 2015.

7. Perisic L *et al.* Profiling of atherosclerotic lesions by gene and tissue microarrays reveals PCSK6 as a novel protease in unstable carotid atherosclerosis. *Arterioscler Thromb Vasc Biol* 2013 Oct; 33(10):2432-43. Epub 2013 Aug 1.

8. Ko YH *et al.* Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: Implications for preventing chemotherapy resistance. *Cancer Biol Ther* 2011 Dec 15; 12(12):1085-1097. Epub 2011 Dec 15.

9. Stadler C *et al.* Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. *Nat Methods* 2013 Apr; 10(4):315-23. Epub 2013 Feb 24.

10. Brown LJ *et al.* Chronic Reduction of the Cytosolic or Mitochondrial NAD(P)-malic Enzyme Does Not Affect Insulin Secretion in a Rat Insulinoma Cell Line. *J Biol Chem* 2009 Dec 18; 284(51):35359-35367. Epub 2009 Oct 26.

11. Zoccarato F *et al.* Succinate is the controller of O2-/H2O2 release at mitochondrial complex I : negative modulation by malate, positive by cyanide. *J Bioenerg Biomembr* 2009 Aug; 41(4):387-93. Epub 2009 Oct 10.

Product Name	Product Number	Validated Applications
Anti-ACADSB	HPA041458	IHC,WB,ICC-IF
Anti-ACBD7	HPA043326	IHC,ICC-IF
Anti-ACSL5	HPA007162	IHC,WB,ICC-IF
Anti-ADIRF	HPA026810	IHC,ICC-IF
Anti-AGR3	HPA053942	IHC,ICC-IF
Anti-AJUBA	HPA0061711	IHC,WB,ICC-IF
Anti-ALG14	HPA031829	IHC,ICC-IF
Anti-AN- KRD34C	HPA045329	IHC,ICC-IF
Anti-AOAH	HPA021666	IHC,WB
Anti-AQP3	HPA014924	IHC,WB,ICC-IF
Anti-ATF6	HPA005935	IHC
Anti-AT- P6V1B2	HPA008147	IHC,WB,ICC-IF
Anti-AVPR2	HPA046678	IHC
Anti-B3GNT8	HPA043669	IHC
Anti-BCL9	HPA020274	IHC,ICC-IF
Anti-CAND2	HPA005777	IHC,ICC-IF
Anti-CCDC- 144NL	HPA023457	IHC,WB,ICC-IF
Anti-CDH12	HPA029325	IHC
Anti-CDK6	HPA002637	IHC,WB,ICC-IF
Anti-CLDN18	HPA018446	IHC
Anti-COG7	HPA040758	IHC,WB,ICC-IF
Anti-CPE	HPA003545	IHC
Anti-CPE	HPA003819	IHC,WB
Anti-CXorf67	HPA006128	IHC,ICC-IF
Anti-DACH1	HPA012672 ²⁻⁴	IHC,ICC-IF
Anti-DEFB115	HPA053160	IHC
Anti-FAM3D	HPA013844	IHC
Anti-FBXW12	HPA037491	IHC
Anti-FKBP7	HPA0087075	IHC,WB,ICC-IF
Anti-GAA	HPA026970	IHC,WB
Anti-GAK	HPA027463	IHC,ICC-IF
Anti-GALNT6	HPA011762	IHC,WB
Anti-GLB1L3	HPA039916	IHC
Anti-GLDC	HPA0023186	IHC,WB
Anti-GLUL	HPA0073167-8	IHC,WB
Anti-HEPH	HPA005824	IHC,WB
Anti-HLA-E	HPA031454	IHC,ICC-IF
Anti-HMGCS2	HPA027423	IHC,WB
Anti-HMGCS2	HPA027442	IHC,WB,ICC-IF
Anti-HNF4G	HPA005438	IHC
Anti-HPS6	HPA040687	IHC.WB

Product Name	Product	Validated Applications
indifie	Rumber	Applications
Anti-IFITM3	HPA004337 ⁹	IHC,WB
Anti-ITGBL1	HPA005676	IHC,WB
Anti-KLHL8	HPA017762	IHC,ICC-IF
Anti-MAGEB1	HPA002820	IHC
Anti-ME2	HPA008247	IHC,WB,ICC-IF
Anti-ME2	HPA00888010-14	IHC,WB
Anti-METTL7B	HPA038644	IHC,WB,ICC-IF
Anti-MRS2	HPA017642	IHC,WB
Anti-MYBB- P1A	HPA005466	IHC,WB,ICC-IF
Anti-NAA- LADL2	HPA012413	IHC
Anti-NCBP3	HPA00895915	IHC,ICC-IF
Anti-OR9K2	HPA015808	IHC
Anti-OSBPL3	HPA00069116	IHC,WB,ICC-IF
Anti-P2RX6	HPA028776	IHC,ICC-IF
Anti-PFKFB2	HPA049975	IHC,ICC-IF
Anti-PHTF2	HPA012312	IHC,ICC-IF
Anti-PITX1	HPA008743	IHC,ICC-IF
Anti-PKN3	HPA045390	IHC
Anti-POMK	HPA013321	IHC,WB,ICC-IF
Anti-PPP1R35	HPA051607	IHC
Anti-PYGB	HPA031067	IHC,WB,ICC-IF
Anti-RAD18	HPA008752	IHC,WB,ICC-IF
Anti-REEP4	HPA042683	IHC,WB
Anti-REG1A	HPA045549	IHC,WB
Anti-RIPPLY2	HPA047454	IHC
Anti-RPS13	HPA005985	IHC,ICC-IF
Anti-S100A4	HPA00797317-18	IHC,WB
Anti-SATB2	HPA00104219-22	IHC
Anti-SOCS7	HPA004475 ²³	IHC,ICC-IF
Anti-SQLE	HPA018038 ²⁴	IHC,WB
Anti-STAG3	HPA049106	IHC
Anti-SYNC	HPA028311	IHC,ICC-IF
Anti-TACC3	HPA005781 ²⁵	IHC,WB
Anti-TBXAS1	HPA031257	IHC
Anti-TBXAS1	HPA031258	IHC
Anti-TBXAS1	HPA031259	IHC,WB
Anti-TGFBI	HPA017019	IHC,WB
Anti- TMEM154	HPA019184	IHC
Anti- TMEM222	HPA016579	IHC,ICC-IF
Anti-TMEM47	HPA046658	IHC,ICC-IF
Anti-TPX2	HPA005487 ²⁶	IHC,WB,ICC-IF

12. MacDonald MJ *et al.* Mitochondrial malic enzyme (ME2) in pancreatic islets of the human, rat and mouse and clonal insulinoma cells. *Arch Biochem Biophys* 2009 Aug 15; 488(2):100-4.

13. MacDonald MJ *et al.* Mitochondrial malic enzyme (ME2) in pancreatic islets of the human, rat and mouse and clonal insulinoma cells. *Arch Biochem Biophys* 2009 Aug 15; 488(2):100-4.

14. MacDonald MJ *et al.* Mitochondrial Malic Enzyme (ME2) In Pancreatic Islets of the Human, Rat and Mouse and Clonal Insulinoma Cells: Simple Enzyme Assay For Mitochondrial Malic Enzyme 2. *Arch Biochem Biophys* 2009 Aug 15; 488(2):100-104.

15. Gebhardt A *et al.* mRNA export through an additional cap-binding complex consisting of NCBP1 and NCBP3. *Nat Commun* 2015 Sep 18; 6:8192. Epub 2015 Sep 18.

 Ek S et al. From gene expression analysis to tissue microarrays: a rational approach to identify therapeutic and diagnostic targets in lymphoid malignancies. *Mol Cell Proteomics* 2006 Jun; 5(6):1072-81. Epub 2006 Mar

17. den Boon JA *et al.* Molecular transitions from papillomavirus infection to cervical precancer and cancer: Role of stromal estrogen receptor signaling. *Proc Natl Acad Sci U S A* 2015 Jun 23; 112(25):E3255-E3264. Epub 2015 Jun 8.

 Laguë MN *et al.* Decidual PTEN expression is required for trophoblast invasion in the mouse. *Am J Physiol Endocrinol Metab* 2010 Dec; 299(6):E936-E946. Epub 2010 Sep 21.

19. Hjelm B *et al.* Generation of monospecific antibodies based on affinity capture of polyclonal antibodies. *Protein Sci* 2011 Nov; 20(11):1824-35. Epub 2011 Oct 12.

20. Magnusson K *et al.* SATB2 in combination with cytokeratin 20 identifies over 95% of all colorectal carcinomas. *Am J Surg Pathol* 2011 Jul; 35(7):937-48.

21. Wensman H *et al.* Extensive expression of craniofacial related homeobox genes in canine mammary sarcomas. *Breast Cancer Res Treat* 2009 Nov; 118(2):333-43. Epub 2008 Dec 2.

22. Ek S *et al.* From gene expression analysis to tissue microarrays: a rational approach to identify therapeutic and diagnostic targets in lymphoid malignancies. *Mol Cell Proteomics* 2006 Jun; 5(6):1072-81. Epub 2006 Mar 8.

23. Fagerberg L *et al.* Analysis of the Human Tissue-specific Expression by Genome-wide Integration of Transcriptomics and Antibodybased Proteomics. *Mol Cell Proteomics* 2014 Feb; 13(2):397-406. Epub 2013 Dec 5.

24. Nguyen VT *et al.* Differential epigenetic reprogramming in response to specific endocrine therapies promotes cholesterol biosynthesis and cellular invasion. *Nat Commun* 2015 Nov 27; 6:10044. Epub 2015 Nov 27.

25. Guo Y *et al.* Regulating the ARNT/TACC3 axis: Multiple approaches to manipulating protein/ protein interactions with small molecules. *ACS Chem Biol* 2013 Mar 15; 8(3):626-635. Epub 2012 Dec 26.

Anti-HEPH (HPA005824)

Using IHC, the Anti-HEPH antibody (HPA005824) shows cytoplasmic and membranous positivity in glandular cells in normal human colon tissue. In some colorectal cancer samples, prominent membranous positivity could be seen.

Anti-GLUL (HPA007316)

Using IHC, the Anti-GLUL antibody (HPA007316) shows either positive, or negative staining in different colorectal cancer samples.

Anti-SOCS7 (HPA004475)

The Anti-SOCS7 antibody (HPA004475) shows positivity in glandular cells in normal human colon tissue, while colorectal cancer samples are negative.

Anti-S100A4 (HPA007973)

The Anti-S100A4 antibody (HPA007973) shows no positivity in glandular cells in normal human colon tissue (left image), while colorectal cancer samples are either positive (right image), or negative.

Epithelial to Mesenchymal Transition Marker Panel

The EMT Panel

Epithelial and mesenchymal cells are fundamentally different and represent the two main cell types in the body. Epithelial cells are polarised along the apical/basal axis and are tightly connected to each other as well as to underlying basement membrane by a number of cell junction proteins. In contrast, mesenchymal cells are adhered to the extracellular matrix and have enhanced migratory capacities.

Epithelial cells can transition into mesenchymal cells - a process known as epithelial-mesenchymal transition (EMT), which leads to loss of epithelial barrier functions and changes in cell adhesion and motility¹. Normally, EMT occurs during development (embryogenesis), but it is also present in wound healing and cancer progression of epithelial tumors. In metastasis, tumor cells dissociate from the epithelial layer, penetrate through basement membrane into connective tissue and can then enter the vascular system for further dissemination and subsequent growth of distant metastases².

A number of factors drive and regulate the EMT process, including zinc finger proteins such as SNAI1, SNAI2, ZEB1 and ZNF703. These transcription factors down-regulate the expression of epithelial cell adhesion proteins such as E-cadherin, occludin, beta-catenin and claudin. In addition, they up-regulate expression of mesenchymal proteins, including N-cadherin, fibronectin, vimentin, S100A4 and others. Taken together, EMT leads to increase motility and invasiveness of cancer cells¹.

This panel of Prestige Monoclonals has been developed against the key EMT markers for cell junctions, cytoskeletal changes, transcription regulation and migration/motility. The antibodies targeting selected EMT marker proteins are:

- IHC-validated in relevant normal and cancer human tissues
- WB-validated in positive and negative cell lines (when available)
- Available with different isotypes, allowing for multiplexing experiments
- Supplemented with information on antigens used for immunization and precise epitope sequence (when available)

The monoclonal antibodies within the panel have been developed using the same stringent conditions as for all Prestige Monoclonals, ensuring a secured continuity and stable supply.

Using Monoclonals of Defined Isotypes for Multiplexed Immunofluorescence

The EMT panel includes monoclonal antibodies with different isotypes, which allows for co-localization studies using immunofluorescence with isotype-specific secondary antibodies. The images on the right side show multiplexed staining of colorectal cancer tissue derived from two different patients using the Anti-CDH1 (A, E: AMAb90863, IgG1), Anti-CTNNB1 (B, F: AMAb91209, IgG2a) and LAMC1 (C, G: AMAb91138, IgG2b) monoclonal antibodies, respectively. The tumor with higher degree of differentiation (indicated by preserved basement membrane, C) shows higher expression of E-cadherin (A) as compared to the tumor with lower differentiation grade (E). Also note the absence of LAMC1 immunoreactivity in the second tumor (G). Beta-catenin (CTNNB1) expression is preserved in both tumors (B, F). Panels D and H show overlay images for the two tumors.

Transcription factors involved in regulation of EMT. IHC images show nuclear immunoreactivity in tumor cells in (A) colorectal cancer (Anti-SNAI1 antibody AMAb91215), (B) cervical cancer (Anti-SIX1 antibody AMAb90544) and (C) breast cancer (Anti-ZNF703 AMAb90789).

Table 1.

Summary of the Prestige Monoclonals EMT Markers.

Marker for	Product Name	Product Number	Validated Applications	Epitope	Isotype
Cell junctions	Anti-CDH1	AMAb90862	IHC, WB	NWTIQYNDPTQESII	IgG2b
Cell junctions	Anti-CDH1	AMAb90863	IHC, WB	APIPEPRTIF	IgG1
Cell junctions	Anti-CDH1	AMAb90865	IHC, WB	LKPKMALEVG	IgG2a
Cell junctions	Anti-OCLN	AMAb90889	IHC, WB	TSPVDDFRQPRYSSG	IgG2a
Cell junctions	Anti-OCLN	AMAb90890	IHC, WB	NDKRFYPESSYKSTP	IgG2a
Cell junctions	Anti-OCLN	AMAb90893	IHC, WB	RYSSGGNFETPSKRA	IgG1
Cell junctions	Anti-CTNNB1	AMAb91209	IHC, WB	TSQVLYEWEQGFSQS	IgG2a
Cell junctions	Anti-CTNNB1	AMAb91210	IHC, WB	TSQVLYEWEQGFSQS	IgG1
Cell junctions	Anti-CLDN1	AMAb91213	IHC, WB	KTTSYPTPRPYPKPA	IgG1
Cytoskeletal changes	Anti-VIM	AMAb90516	IHC, WB	N.D.	IgG1
Cytoskeletal changes	Anti-S100A4	AMAb90596	IHC, WB	KFKLNKSELKELLTR	IgG1
Cytoskeletal changes	Anti-S100A4	AMAb90598	IHC, WB	CNEFFEGFPDKQPRKK	IgG2b
Cytoskeletal changes	Anti-S100A4	AMAb90599	IHC, WB	CNEFFEGFPD	IgG1
Transcription regulation	Anti-SNAI1	AMAb91215	IHC	N.D.	IgG1
Transcription regulation	Anti-ZEB1	AMAb90510	IHC, WB, ICC	N.D.	IgG1
Transcription regulation	Anti-SIX1	AMAb90544	IHC, WB, ICC	N.D.	IgG1
Transcription regulation	Anti-ZNF703	AMAb90789	IHC, WB	PGDKAGFRVP	IgG1
Transcription regulation	Anti-TP63	AMAb91224	IHC, WB	MQYLPQHTIETYRQQ	IgG1
Migration/Motility	Anti-CDH2	AMAb91220	IHC, WB	ENPYFAPNPK	IgG1
Migration/Motility	Anti-FN1	AMAb91223	IHC, WB	GRWKCDPVDQ	IgG1
Migration/Motility	Anti-MMP9	AMAb90804	IHC, WB	VPDLGRFQTF	IgG1
Migration/Motility	Anti-MMP9	AMAb90805	IHC, WB	RGESKSLGPALLLLQ	IgG1
Migration/Motility	Anti-MMP9	AMAb90806	IHC	RGESKSLGPALLLLQ	IgG2b

Related

Publications 1. Lamouille S *et al.* Molecular mechanisms of epitheli-al-mesenchymal transition. 2014 *Nat Rev Mol Cell Biol.* 15(3):178-196

2. Chambers AF et al. 2002. Dissemination and growth of cancer cells in metasta-tic sites. *Nat Rev Cancer* 2(8):563-572.

Multiplexed IHC-IF staining of two colorectal tumors (A-D and E-H) showing E-cadherin (A, E), beta-catenin (B, F) and laminin-gamma 1 (C, G) immunoreactivity using primary antibodies of different isotypes: Anti-CDH1 AMAb90863, IgG1 (red), Anti-CTNNB1 AMAb91209, IgG2a (green) and Anti-LAMC1 (AMAb9138), IgG2b (blue). Arrowheads in C indicate basement membrane. Alexa Fluor® 647-, 594- and 488-labelled isotype-specific secondary antibodies (Life Technologies) were used for visualisation.

Finding biomarkers for colorectal cancer research

Colorectal Cancer

Colorectal cancer is one of the most common types of cancer. Each year, approximately one million new cases are detected, and approximately 600,000 deaths can be contributed to this disease worldwide. Today, surgery is the only curative treatment for colorectal cancer, but adjuvant treatment may significantly improve patient survival. For adjuvant treatment to be successful, however, it is important to correctly identify patients that will benefit from treatment. For colon cancer, which accounts for approximately 70% of colorectal cancer cases, adjuvant treatment is currently recommended for patients with stage III and high-risk stage II disease. For patients with stage II colon cancer, it is thus of utmost importance to find biomarkers that can separate high-risk disease from low-risk disease.

Colorectal Cancer Biomarkers

Within the Human Protein Atlas (HPA) project, several potential prognostic and diagnostic biomarkers have been discovered. By staining of both normal- and tumor tissue samples, proteins with a tissue specific expression have been identified. Also, proteins with a differential expression in colorectal tissue samples from different patients have been identified. These potential biomarkers have subsequently been analyzed in larger patient cohorts, and their prognostic potential evaluated. Below, some of the most promising markers are described briefly.

RBM3

The RNA-binding motif protein 3 (RBM3) is an RNAand DNA-binding protein, whose function has not been fully elucidated. It has been shown that the protein is expressed as an early event in mild hypothermia, and also in other conditions relating to cellular stress, such as glucose deprivation and hypoxia. During stress, RBM3 is thought to protect the cells by aiding in maintenance of protein synthesis needed for survival. Recently, it has also been shown that RBM3 attenuates stem cell-like properties in prostate cancer cells.

The RNA-binding protein RBM3 was identified via the Human Protein Atlas as an oncology biomarker through the differential expression pattern observed within several investigated cancers.

The levels of RBM3 expression were found to have a significant correlation to patient survival in breast, colon, ovarian, testicular, prostate and urothelial cancer as well as in malignant melanoma.

The Anti-RBM3 (AMAb90655) antibody shows nuclear positivty by IHC in cancer cells in human colorectal tumor samples and nuclear staining by ICC-IF in U2-OS cells. By WB, the AMAb90655 antibody signal is down regulated using target specific siRNA probes in U-251 cells.

RBM3 as a prognostic biomarker in colon cancer

RBM3 was shown to be a prognostic marker in colorectal cancer in two independent patient cohorts, with a significantly improved survival for patients with high levels of RBM3 expression in their tumors. When analyzing stage II patients separately, similar results were obtained.

This indicates that RBM3 may be used as a biomarker for aid in deciding which stage II patients would benefit from adjuvant treatment.

RBM3 as a treatment predictive biomarker

The RBM3 protein has also been shown to be a treatment predictive marker for platinum based treatment. Chemotherapy with oxaliplatin is commonly used in colorectal cancer treatment.

Related Publications

Zeng Y *et al.* (2013) Stress response protein RBM3 attenuates the stem-like properties of prostate cancer cells by interfering with CD44 variant splicing. *Cancer Res.* Jul 1;73(13):4123-33.

Ehlén A *et al.* Expression of the RNA-binding protein RBM3 is associated with a favourable prognosis and cisplatin sensitivity in epithelial ovarian cancer. *J Transl Med.* 2010 Aug 20;8:78.

Hjelm B *et al.* High nuclear RBM3 expression is associated with an improved prognosis in colorectal cancer. *Proteomics Clin Appl.* 2011 Dec;5(11-12):624-35.

Boman K *et al.* Decreased expression of RNA-binding motif protein 3 correlates with tumour progression and poor prognosis in urothelial bladder cancer. *BMC Urol.* 2013, 13:17.

SATB2 – A diagnostic biomarker for tumors of colorectal origin

Cell- and cancer-type specific proteins are rare. The special AT-rich sequence-binding protein SATB2 has been identified as having a very selective expression pattern. In cells of epithelial lineages, SATB2 is expressed in glandular cells lining the lower gastrointestinal tract and expression is retained in a large majority of primary and metastatic colorectal cancers. Thus, SATB2 is a promising diagnostic biomarker for tumors of colorectal origin.

In a previously published study by Magnusson et al it was shown, by analyzing more than 1,800 tumor samples, that SATB2 expression is largely preserved in cells of colorectlal cancer origin. More than 85% of all colorectal cancers showed distinct SATB2 immunostaining and when used in combination with Cytokeratin 20 analysis, SATB2 identified more than 95% of all tumors with colorectal origin.

These promising data suggested that the combination of SATB2 and CK20 should be tested in an unbiased clinical study to further validate the initial findings. In a recent publication by Dragomir et al, the expression of SATB2 was analyzed in over 800 consecutive clinical cases for which CK20 immunostaining was considered necessary to obtain a final diagnosis. In this study, SATB2 showed 93% sensitivity and 77% specificity to determine a cancer of colorectal origin and in combination with CK7 and CK20, the specificity increased to 100%. SATB2 thus provides a new and advantageous supplement to current standards for clinical differential diagnosis.

Immunohistochemical staining of human colorectal tumor with Anti-SATB2 antibody (AMAb90635) shows strong nuclear staining in tumor cells.

Related Publications

Magnusson K et al. SATB2 in combination with cytokeratin 20 identifies over 95% of all colorectal carcinomas. Am J Surg Pathol. 2011 Jul;35(7):937-48.

Dragomir A *et al*. The role of SATB2 as a diagnostic marker for tumors of colorectal origin: results from a pathology-based clinical prospective study. *Am J Clin Pathol*. 2013 In press.

PODXL - An independent factor for poor prognosis and treatment stratification

Kaplan–Meier estimates of 5-year Overall Survival (OS) according to PODXL expression in a urothelial cancer patient cohort of 110 individuals.

Podocalyxin-like 1 (PODXL) is a celladhesion glycoprotein and stem cell marker that has been associated with aggressive tumor phenotype and adverse outcome in several cancer types.

In a number of recently published papers, Larsson *et al* have demonstrated that membraneous expression of PODXL is associated with unfavourable clinicopathological characteristics and independently predicts a poor prognosis in colorectal cancer (CRC). This has been demonstrated in three independent patient cohorts in total comprising more than 1,000 patients. The results clearly demonstrate the potential utility of PODXL as a biomarker for more precise prognostication and treatment stratification in CRC.

Boman *et al* have investigated the prognostic impact of membraneous PODXL expression in almost 500 cases of urothelial cancer. They concluded that PODXL is indeed an independent risk factor for progressive disease and death in patients with urothelial cancer and that this warrant further studies to fully evaluate the use of PODXL as a biomarker for improved treatment stratification of bladder cancer patients.

Immunohistochemical staining of PODXL protein in colorectal tumor tissue using A) HPA002110, B) AMAb90643, C) AMAb90644 and D) AMAb90667 antibodies.

Related Publications

Larsson A *et al.* Overexpression of podocalyxin-like protein is an independent factor of poor prognosis in colorectal cancer. *Br J Cancer* 2011 Aug 23;105(5):666-72.

Larsson A *et al*. Validation of podocalyxin-like protein as a biomarker of poor prognosis in colorectal cancer. *BMC Cancer*. 2012 Jul 8;12:282.

Boman K *et al.* Membraneous expression of podocalyxin-like protein is an independent factor of poor prognosis in urothelial bladder cancer. *Br J Cancer.* 2013 Jun 11;108(11), 2321-2328. Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волагоград (844)278-03-48 Вологоград (844)278-03-48 Воролеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Курган (3522)50-90-47 Липецк (4742)52-20-81

Россия +7(495)268-04-70

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Ноябрьск (3496)41-32-12 Ноябрьск (3496)41-32-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Саранск (8342)22-96-24 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Суррт (3462)77-98-35 Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35 Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Улан-Уда (3012)59-97-51 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Черповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Киргизия +996(312)96-26-47

www.sigmaaldrich.nt-rt.ru || scx@nt-rt.ru

Казахстан +7(7172)727-132